Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María del Mar Jiménez-Gasco is active.

Publication


Featured researches published by María del Mar Jiménez-Gasco.


European Journal of Plant Pathology | 2004

FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium

David M. Geiser; María del Mar Jiménez-Gasco; Seogchan Kang; Izabela Makalowska; Narayanan Veeraraghavan; Todd J. Ward; Ning Zhang; Gretchen A. Kuldau; Kerry O'Donnell

One of the greatest impediments to the study of Fusarium has been the incorrect and confused application of species names to toxigenic and pathogenic isolates, owing in large part to intrinsic limitations of morphological species recognition and its application. To address this problem, we have created FUSARIUM-ID v. 1.0, a publicly available database of partial translation elongation factor 1-alpha (TEF) DNA sequences, presently representing a selected sample of the diversity of the genus diversity, with excellent representation of Type-B trichothecene toxin producers, and the Gibberella fujikuroi, Fusarium oxysporum and F. solani species complexes. Users can generate sequences using primers that are conserved across the genus, and use the sequence as a query to BLAST the database, which can be accessed at http://fusarium.cbio.psu.edu, or in a phylogenetic analysis. Correct identification of a known species in these groups often can be performed using this gene region alone. This growing database will contain only vouchered sequences attached to publicly available cultures. In the future, FUSARIUM-ID will be expanded to include additional sequences, including multiple sequences from the same species, sequences from new and revised species, and information from additional genes.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Lignin degradation in wood-feeding insects

Scott M. Geib; Timothy R. Filley; Patrick G. Hatcher; Kelli Hoover; John E. Carlson; María del Mar Jiménez-Gasco; Akiko Nakagawa-Izumi; Rachel L. Sleighter; Ming Tien

The aromatic polymer lignin protects plants from most forms of microbial attack. Despite the fact that a significant fraction of all lignocellulose degraded passes through arthropod guts, the fate of lignin in these systems is not known. Using tetramethylammonium hydroxide thermochemolysis, we show lignin degradation by two insect species, the Asian longhorned beetle (Anoplophora glabripennis) and the Pacific dampwood termite (Zootermopsis angusticollis). In both the beetle and termite, significant levels of propyl side-chain oxidation (depolymerization) and demethylation of ring methoxyl groups is detected; for the termite, ring hydroxylation is also observed. In addition, culture-independent fungal gut community analysis of A. glabripennis identified a single species of fungus in the Fusarium solani/Nectria haematococca species complex. This is a soft-rot fungus that may be contributing to wood degradation. These results transform our understanding of lignin degradation by wood-feeding insects.


Journal of Materials Chemistry | 2008

Effect of MgAl-layered double hydroxide exchanged with linear alkyl carboxylates on fire-retardancy of PMMA and PS

Calistor Nyambo; Ponusa Songtipya; Evangelos Manias; María del Mar Jiménez-Gasco; Charles A. Wilkie

Alkyl carboxylate-modified layered double hydroxides (LDH) were prepared and used as nanofillers for poly(methyl methacrylate) (PMMA) and polystyrene (PS). The LDH intercalated with long-chain linear alkyl carboxylates (CH3(CH2)nCOO−, n = 8, 10, 12, 14, 16, 20) were prepared via anionic exchange of MgAl–nitrate, showing a systematic increase in basal spacing with longer alkyls. MgAl–undecenoate LDH was prepared by co-precipitation. The MgAl–LDHs were melt blended with poly(methyl methacrylate) and bulk polymerized with styrene to form nanocomposites. The dispersion of the MgAl–LDH in the polymers was investigated by transmission electron microscopy and X-ray diffraction. Thermal and fire properties were studied using cone calorimetry and thermogravimetric analysis; the thermal stability of both polymers was enhanced and a very significant reduction in the peak heat release rate was observed for almost all of the poly(methyl methacrylate) composites and a few of the polystyrene composites.


Phytopathology | 2013

One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use.

David M. Geiser; Takayuki Aoki; Charles W. Bacon; Scott E. Baker; Madan K. Bhattacharyya; Mary E. Brandt; Daren W. Brown; L. W. Burgess; S. Chulze; Jeffrey J. Coleman; J. C. Correll; Sarah F. Covert; Pedro W. Crous; Christina A. Cuomo; G. Sybren de Hoog; Antonio Di Pietro; Wade H. Elmer; Lynn Epstein; Rasmus John Normand Frandsen; Stanley Freeman; Tatiana Gagkaeva; Anthony E. Glenn; Thomas R. Gordon; Nancy F. Gregory; Kim E. Hammond-Kosack; Linda E. Hanson; María del Mar Jiménez-Gasco; Seogchan Kang; H. Corby Kistler; Gretchen A. Kuldau

In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.


Phytopathology | 2003

Development of a specific polymerase chain reaction-based assay for the identification of Fusarium oxysporum f. sp. ciceris and its pathogenic races 0, 1A, 5, and 6

María del Mar Jiménez-Gasco; Rafael M. Jiménez-Díaz

ABSTRACT Specific primers and polymerase chain reaction (PCR) assays that identify Fusarium oxysporum f. sp. ciceris and each of the F. oxysporum f. sp. ciceris pathogenic races 0, 1A, 5, and 6 were developed. F. oxysporum f. sp. ciceris- and race-specific random amplified polymorphic DNA (RAPD) markers identified in a previous study were cloned and sequenced, and sequence characterized amplified region (SCAR) primers for specific PCR were developed. Each cloned RAPD marker was characterized by Southern hybridization analysis of Eco RI-digested genomic DNA of a subset of F. oxysporum f. sp. ciceris and nonpathogenic F. oxysporum isolates. All except two cloned RAPD markers consisted of DNA sequences that were found highly repetitive in the genome of all F. oxysporum f. sp. ciceris races. F. oxysporum f. sp. ciceris isolates representing eight reported races from a wide geographic range, nonpathogenic F. oxysporum isolates, isolates of F. oxysporum f. spp. lycopersici, melonis, niveum, phaseoli, and pisi, and isolates of 47 different Fusarium spp. were tested using the SCAR markers developed. The specific primer pairs amplified a single 1,503-bp product from all F. oxysporum f. sp. ciceris isolates; and single 900- and 1,000-bp products were selectively amplified from race 0 and race 6 isolates, respectively. The specificity of these amplifications was confirmed by hybridization analysis of the PCR products. A race 5-specific identification assay was developed using a touchdown-PCR procedure. A joint use of race 0- and race 6-specific SCAR primers in a single-PCR reaction together with a PCR assay using the race 6-specific primer pair correctly identified race 1A isolates for which no RAPD marker had been found previously. All the PCR assays described herein detected up to 0.1 ng of fungal genomic DNA. The specific SCAR primers and PCR assays developed in this study clearly identify and differentiate isolates of F. oxysporum f. sp. ciceris and of each of its pathogenic races 0, 1A, 5, and 6.


Environmental Entomology | 2009

Effect of Host Tree Species on Cellulase Activity and Bacterial Community Composition in the Gut of Larval Asian Longhorned Beetle

Scott M. Geib; María del Mar Jiménez-Gasco; John E. Carlson; Ming Tien; Kelli Hoover

ABSTRACT Anoplophora glabripennis, the Asian longhorned beetle, is a wood-boring insect that can develop in a wide range of healthy deciduous hosts and requires gut microbes to aid in wood degradation and digestion. Here we show that larval A. glabripennis harbor a diverse gut bacterial community, and this community can be extremely variable when reared in different host trees. A. glabripennis reared in a preferred host (Acer saccharum) had the highest gut bacterial diversity compared with larvae reared either in a secondary host (Quercus palustris), a resistant host (Pyrus calleryana), or on artificial diet. The gut microbial community of larval A. glabripennis collected from field populations on Brooklyn, NY, showed the highest degree of complexity among all samples in this study. Overall, when larvae fed on a preferred host, they harbored a broad diversity of gut bacteria spanning the &agr;-, &bgr;-, &ggr;-Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Cellulase activities (&bgr;-1,4-endoglucanase, &bgr;-1,4-exoglucanase, and &bgr;-1,4-glucosidase) in the guts of larvae fed in a preferred host (A. saccharum) or a secondary host (Q. palustris) were significantly higher than that of artificial diet fed larvae. Larvae that fed on wood from a resistant host (P. calleryana) showed suppressed total gut cellulase activity. Results show that the host tree can impact both gut microbial community complexity and cellulase activity in A. glabripennis.


Phytopathology | 2011

Region-Wide Analysis of Genetic Diversity in Verticillium dahliae Populations Infecting Olive in Southern Spain and Agricultural Factors Influencing the Distribution and Prevalence of Vegetative Compatibility Groups and Pathotypes

Rafael M. Jiménez-Díaz; Concepción Olivares-García; Blanca B. Landa; María del Mar Jiménez-Gasco; Juan A. Navas-Cortés

Severity of Verticillium wilt in olive trees in Andalusia, southern Spain is associated with the spread of a highly virulent, defoliating (D) Verticillium dahliae pathotype of vegetative compatibility group 1A (VCG1A) but the extent of this spread and the diversity of the pathogen population have never been documented. VCG typing of 637 V. dahliae isolates from 433 trees in 65 orchards from five olive-growing provinces in Andalusia indicated that 78.1% were of VCG1A, 19.8% of VCG2A, 0.6% of VCG2B, 1.4% of VCG4B, and one isolate was heterokaryon self-incompatible. A single VCG prevailed among isolates within most orchards but two and three VCGs were identified in 12 and 3 orchards, respectively, with VCG1A+VCG2A occurring in 10 orchards. VCG1A was the predominant VCG in the three most important olive-growing provinces, and was almost as prevalent as VCG2A in another one. Molecular pathotyping of the 637 isolates using specific polymerase chain reaction assays indicated that VCG1A isolates were of the D pathotype whereas isolates of VCG2A, -2B, and -4B were of the less virulent nondefoliating (ND) pathotype. The pathotype of isolates correlated with the disease syndrome affecting sampled trees. Only three (seq1, seq2, and seq4) of the seven known sequences of the V. dahliae-specific 539- or 523-bp amplicon were identified among the 637 isolates. Distribution and prevalence of VCGs and seq sequences among orchards indicated that genetic diversity within olive V. dahliae in Andalusia is higher in provinces where VCG1A is not prevalent. Log-linear analysis revealed that irrigation management, source of irrigation water, source of planting stock, and cropping history of soil were significantly associated with the prevalence of VCG1A compared with that of VCG2A. Multivariate analyses using a selected set of agricultural factors as variables allowed development of a discriminant model for predicting the occurrence of D and ND pathotypes in the area of the study. Blind tests using this model correctly indentified the V. dahliae pathotype occurring in an orchard. The widespread occurrence and high prevalence of VCG1A/D pathotype in Andalusia have strong implications for the management of the disease.


BMC Genomics | 2012

Transposable elements in phytopathogenic Verticillium spp.: insights into genome evolution and inter- and intra-specific diversification

Stefan G. Amyotte; Xiaoping Tan; Kayla Pennerman; María del Mar Jiménez-Gasco; Steven J. Klosterman; Li-Jun Ma; Katherine F. Dobinson; Paola Veronese

BackgroundVerticillium dahliae (Vd) and Verticillium albo-atrum (Va) are cosmopolitan soil fungi causing very disruptive vascular diseases on a wide range of crop plants. To date, no sexual stage has been identified in either microorganism suggesting that somatic mutation is a major force in generating genetic diversity. Whole genome comparative analysis of the recently sequenced strains VdLs.17 and VaMs.102 revealed that non-random insertions of transposable elements (TEs) have contributed to the generation of four lineage-specific (LS) regions in VdLs.17.ResultsWe present here a detailed analysis of Class I retrotransposons and Class II “cut-and-paste” DNA elements detected in the sequenced Verticillium genomes. We report also of their distribution in other Vd and Va isolates from various geographic origins. In VdLs.17, we identified and characterized 56 complete retrotransposons of the Gypsy-, Copia- and LINE-like types, as well as 34 full-length elements of the “cut-and-paste” superfamilies Tc1/mariner, Activator and Mutator. While Copia and Tc1/mariner were present in multiple identical copies, Activator and Mutator sequences were highly divergent. Most elements comprised complete ORFs, had matching ESTs and showed active transcription in response to stress treatment. Noticeably, we found evidences of repeat-induced point mutation (RIP) only in some of the Gypsy retroelements. While Copia-, Gypsy- and Tc1/mariner-like transposons were prominent, a large variation in presence of the other types of mobile elements was detected in the other Verticillium spp. strains surveyed. In particular, neither complete nor defective “cut-and-paste” TEs were found in VaMs.102.ConclusionsCopia-, Gypsy- and Tc1/mariner-like transposons are the most wide-spread TEs in the phytopathogens V. dahliae and V. albo-atrum. In VdLs.17, we identified several retroelements and “cut-and-paste” transposons still potentially active. Some of these elements have undergone diversification and subsequent selective amplification after introgression into the fungal genome. Others, such as the ripped Copias, have been potentially acquired by horizontal transfer. The observed biased TE insertion in gene-rich regions within an individual genome (VdLs.17) and the “patchy” distribution among different strains point to the mobile elements as major generators of Verticillium intra- and inter-specific genomic variation.


PLOS ONE | 2014

Recombination between clonal lineages of the asexual fungus Verticillium dahliae detected by genotyping by sequencing.

Michael G. Milgroom; María del Mar Jiménez-Gasco; Concepción Olivares García; Milton T. Drott; Rafael M. Jiménez-Díaz

Most asexual species of fungi have either lost sexuality recently, or they experience recombination by cryptic sexual reproduction. Verticillium dahliae is a plant-pathogenic, ascomycete fungus with no known sexual stage, even though related genera have well-described sexual reproduction. V. dahliae reproduces mitotically and its population structure is highly clonal. However, previously described discrepancies in phylogenetic relationships among clonal lineages may be explained more parsimoniously by recombination than mutation; therefore, we looked for evidence of recombination within and between clonal lineages. Genotyping by sequencing was performed on 141 V. dahliae isolates from diverse geographic and host origins, resulting in 26,748 single-nucleotide polymorphisms (SNPs). We found a strongly clonal population structure with the same lineages as described previously by vegetative compatibility groups (VCGs) and molecular markers. We detected 443 recombination events, evenly distributed throughout the genome. Most recombination events detected were between clonal lineages, with relatively few recombinant haplotypes detected within lineages. The only three isolates with mating type MAT1-1 had recombinant SNP haplotypes; all other isolates had mating type MAT1-2. We found homologs of eight meiosis-specific genes in the V. dahliae genome, all with conserved or partially conserved protein domains. The extent of recombination and molecular signs of sex in (mating-type and meiosis-specific genes) suggest that V. dahliae clonal lineages arose by recombination, even though the current population structure is markedly clonal. Moreover, the detection of new lineages may be evidence that sexual reproduction has occurred recently and may potentially occur under some circumstances. We speculate that the current clonal population structure, despite the sexual origin of lineages, has arisen, in part, as a consequence of agriculture and selection for adaptation to agricultural cropping systems.


Phytopathology | 2004

Stepwise Evolution of Races in Fusarium oxysporum f. sp. ciceris Inferred from Fingerprinting with Repetitive DNA Sequences.

María del Mar Jiménez-Gasco; Michael G. Milgroom; Rafael M. Jiménez-Díaz

ABSTRACT Plant pathogens often exhibit variation in virulence, the ability to cause disease on host plants with specific resistance, evident from the diversity of races observed within pathogen species. The evolution of races in asexual fungal pathogens has been hypothesized to occur in a stepwise fashion, in which mutations to virulence accumulate sequentially in clonal lineages, resulting in races capable of overcoming multiple host plant resistance genes or multiple resistant cultivars. In this study, we demonstrate a simple stepwise pattern of race evolution in Fusarium oxysporum f. sp. ciceris, the fungus that causes Fusarium wilt of chickpeas. The inferred intraspecific phylogeny of races in this fungus, based on DNA fingerprinting with repetitive sequences, shows that each of the eight races forms a monophyletic lineage. By mapping virulence to each differential cultivar (used for defining races) onto the inferred phylogeny, we show that virulence has been acquired in a simple stepwise pattern, with few parallel gains or losses. Such a clear pattern of stepwise evolution of races, to our knowledge, has not been demonstrated previously for other pathogens based on analyses of field populations. We speculate that in other systems the stepwise pattern is obscured by parallel gains or losses of virulence caused by higher mutation rates and selection by widespread deployment of resistant cultivars. Although chickpea cultivars resistant to Fusarium wilt are available, their deployment has not been extensive and the stepwise acquisition of virulence is still clearly evident.

Collaboration


Dive into the María del Mar Jiménez-Gasco's collaboration.

Top Co-Authors

Avatar

Evangelos Manias

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Ponusa Songtipya

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blanca B. Landa

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J. Armengol

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Juan A. Navas-Cortés

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Berbegal

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Carlson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Kelli Hoover

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge