Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Ericsson is active.

Publication


Featured researches published by Maria Ericsson.


Science Translational Medicine | 2012

Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model

Lee E. Goldstein; Andrew Fisher; Chad Tagge; Xiao-lei Zhang; Libor Velíšek; John Sullivan; Chirag Upreti; Jonathan M. Kracht; Maria Ericsson; Mark Wojnarowicz; Cezar Goletiani; Giorgi Maglakelidze; Noel Casey; Juliet A. Moncaster; Olga Minaeva; Robert D. Moir; Christopher J. Nowinski; Robert A. Stern; Robert C. Cantu; James Geiling; Jan Krzysztof Blusztajn; Benjamin Wolozin; Tsuneya Ikezu; Thor D. Stein; Andrew E. Budson; Neil W. Kowall; David Chargin; Andre Sharon; Sudad Saman; Garth F. Hall

Blast exposure is associated with chronic traumatic encephalopathy, impaired neuronal function, and persistent cognitive deficits in blast-exposed military veterans and experimental animals. Blast Brain: An Invisible Injury Revealed Traumatic brain injury (TBI) is the “signature” injury of the conflicts in Afghanistan and Iraq and is associated with psychiatric symptoms and long-term cognitive disability. Recent estimates indicate that TBI may affect 20% of the 2.3 million U.S. servicemen and women deployed since 2001. Chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disorder reported in athletes with multiple concussions, shares clinical features with TBI in military personnel exposed to explosive blast. However, the connection between TBI and CTE has not been explored in depth. In a new study, Goldstein et al. investigate this connection in the first case series of postmortem brains from U.S. military veterans with blast exposure and/or concussive injury. They report evidence for CTE neuropathology in the military veteran brains that is similar to that observed in the brains of young amateur American football players and a professional wrestler. The investigators developed a mouse model of blast neurotrauma that mimics typical blast conditions associated with military blast injury and discovered that blast-exposed mice also demonstrate CTE neuropathology, including tau protein hyperphosphorylation, myelinated axonopathy, microvascular damage, chronic neuroinflammation, and neurodegeneration. Surprisingly, blast-exposed mice developed CTE neuropathology within 2 weeks after exposure to a single blast. In addition, the neuropathology was accompanied by functional deficits, including slowed axonal conduction, reduced activity-dependent long-term synaptic plasticity, and impaired spatial learning and memory that persisted for 1 month after exposure to a single blast. The investigators then showed that blast winds with velocities of more than 330 miles/hour—greater than the most intense wind gust ever recorded on earth—induced oscillating head acceleration of sufficient intensity to injure the brain. The researchers then demonstrated that blast-induced learning and memory deficits in the mice were reduced by immobilizing the head during blast exposure. These findings provide a direct connection between blast TBI and CTE and indicate a primary role for blast wind–induced head acceleration in blast-related neurotrauma and its aftermath. This study also validates a new blast neurotrauma mouse model that will be useful for developing new diagnostics, therapeutics, and rehabilitative strategies for treating blast-related TBI and CTE. Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory.


Annals of Neurology | 2005

Interferon-α/β–mediated innate immune mechanisms in dermatomyositis

Steven A. Greenberg; Jack L. Pinkus; Geraldine S. Pinkus; Travis Burleson; Despina Sanoudou; Rabi Tawil; Richard J. Barohn; David Saperstein; Hannah R. Briemberg; Maria Ericsson; Peter J. Park; Anthony A. Amato

Dermatomyositis has been modeled as an autoimmune disease largely mediated by the adaptive immune system, including a local humorally mediated response with B and T helper cell muscle infiltration, antibody and complement‐mediated injury of capillaries, and perifascicular atrophy of muscle fibers caused by ischemia. To further understand the pathophysiology of dermatomyositis, we used microarrays, computational methods, immunohistochemistry and electron microscopy to study muscle specimens from 67 patients, 54 with inflammatory myopathies, 14 with dermatomyositis. In dermatomyositis, genes induced by interferon‐α/β were highly overexpressed, and immunohistochemistry for the interferon‐α/β inducible protein MxA showed dense staining of perifascicular, and, sometimes all myofibers in 8/14 patients and on capillaries in 13/14 patients. Of 36 patients with other inflammatory myopathies, 1 patient had faint MxA staining of myofibers and 3 of capillaries. Plasmacytoid dendritic cells, potent CD4+ cellular sources of interferon‐α, are present in substantial numbers in dermatomyositis and may account for most of the cells previously identified as T helper cells. In addition to an adaptive immune response, an innate immune response characterized by plasmacytoid dendritic cell infiltration and interferon‐α/β inducible gene and protein expression may be an important part of the pathogenesis of dermatomyositis, as it appears to be in systemic lupus erythematosus. Ann Neurol 2005;57:664–678


The Lancet | 2003

Cytosolic β-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer's disease

Lee E. Goldstein; Julien Muffat; Robert A. Cherny; Robert D. Moir; Maria Ericsson; Xudong Huang; Christine Mavros; Jennifer A Coccia; Kyle Y. Fagét; Karlotta A Fitch; Colin L. Masters; Rudolph E. Tanzi; Leo T. Chylack; Ashley I. Bush

Summary Background Pathological hallmarks of Alzheimers disease include cerebral β-amyloid (Aβ) deposition, amyloid accumulation, and neuritic plaque formation. We aimed to investigate the hypothesis that molecular pathological findings associated with Alzheimers disease overlap in the lens and brain. Methods We obtained postmortem specimens of eyes and brain from nine individuals with Alzheimers disease and eight controls without the disorder, and samples of primary aqueous humour from three people without the disorder who were undergoing cataract surgery. Dissected lenses were analysed by slit-lamp stereophotomicroscopy, western blot, tryptic-digest/mass spectrometry electrospray ionisation, and anti-Aβ surface-enhanced laser desorption ionisation (SELDI) mass spectrometry, immunohistochem-istry, and immunogold electron microscopy. Aqueous humour was analysed by anti-Aβ SELDI mass spectrometry. We did binding and aggregation studies to investigate Aβ-lens protein interactions. Findings We identified Aβ1–40 and Aβ1–42 in lenses from people with and without Alzheimers disease at concentrations comparable with brain, and Aβ1–40 in primary aqueous humour at concentrations comparable with cerebrospinal fluid. Aβ accumulated in lenses from individuals with Alzheimers disease as electron-dense deposits located exclusively in the cytoplasm of supranuclear/deep cortical lens fibre cells (n=4). We consistently saw equatorial supranuclear cataracts in lenses from people with Alzheimers disease (n=9) but not in controls (n=8). These supranuclear cataracts colocalised with enhanced Aβ immunoreactivity and birefringent Congo Red staining. Synthetic Aβ bound βB-crystallin, an abundant cytosolic lens protein. Aβ promoted lens protein aggregation that showed protofibrils, birefringent Congo Red staining, and Aβ/αB-crystallin coimmunoreactivity. Interpretation Aβ is present in the cytosol of lens fibre cells of people with Alzheimers disease. Lens Aβ might promote regionally-specific lens protein aggregation, extracerebral amyloid formation, and supranuclear cataracts.


Journal of Biological Chemistry | 1996

Eps15 Is a Component of Clathrin-coated Pits and Vesicles and Is Located at the Rim of Coated Pits

Francesc Tebar; Tatiana Sorkina; Alexander Sorkin; Maria Ericsson; Tomas Kirchhausen

Eps15, a phosphorylation substrate of the epidermal growth factor (EGF) receptor kinase, has been shown to bind to the α-subunit of the clathrin-associated protein complex AP-2. Here we report that in cells, virtually all Eps15 interacts with the cytosol and membrane-bound forms of AP-2. This association is not affected by the treatment of cells with EGF. Immunofluorescence microscopy reveals nearly absolute co-localization of Eps15 with AP-2 and clathrin, and analysis by immunoelectron microscopy shows that the localization of membrane-associated Eps15 is restricted to the profiles corresponding to endocytic coated pits and vesicles. Unexpectedly, Eps15 was found at the edge of forming coated pits and at the rim of budding coated vesicles. This asymmetric distribution is in sharp contrast to the localization of AP-2 that shows an even distribution along the same types of clathrin-coated structures. These findings suggest several possible regulatory roles of Eps15 during the formation of coated pits.


Journal of Clinical Investigation | 1996

Identification and Localization of Polycystin, the PKD1 Gene Product

Lin Geng; Yoav Segal; Bernard Peissel; Nanhua Deng; York Pei; Frank A. Carone; Helmut G. Rennke; Alexandra M. Glücksmann-Kuis; Michael C. Schneider; Maria Ericsson; Stephen T. Reeders; Jing Zhou

Polycystin, the product of autosomal dominant polycystic kidney disease (ADPKD) 1 gene (PKD1) is the cardinal member of a novel class of proteins. As a first step towards elucidating the function of polycystin and the pathogenesis of ADPKD, three types of information were collected in the current study: the subcellular localization of polycystin, the spatial and temporal distribution of the protein within normal tissues and the effects of ADPKD mutations on the pattern of expression in affected tissues. Antisera directed against a synthetic peptide and two recombinant proteins of different domains of polycystin revealed the presence of an approximately 400-kD protein (polycystin) in the membrane fractions of normal fetal, adult, and ADPKD kidneys. Immunohistological studies localized polycystin to renal tubular epithelia, hepatic bile ductules, and pancreatic ducts, all sites of cystic changes in ADPKD, as well as in tissues such as skin that are not known to be affected in ADPKD. By electron microscopy, polycystin was predominantly associated with plasma membranes. Polycystin was significantly less abundant in adult than in fetal epithelia. In contrast, polycystin was overexpressed in most, but not all, cysts in ADPKD kidneys.


ACS Nano | 2014

Dynamic Biodistribution of Extracellular Vesicles in Vivo Using a Multimodal Imaging Reporter

Charles P. Lai; Osama Mardini; Maria Ericsson; Shilpa Prabhakar; Casey A. Maguire; John W. Chen; Bakhos A. Tannous; Xandra O. Breakefield

Extracellular vesicles (EVs) are nanosized vesicles released by normal and diseased cells as a novel form of intercellular communication and can serve as an effective therapeutic vehicle for genes and drugs. Yet, much remains unknown about the in vivo properties of EVs such as tissue distribution, blood levels, and urine clearance, important parameters that will define their therapeutic effectiveness and potential toxicity. Here we combined Gaussia luciferase and metabolic biotinylation to create a sensitive EV reporter (EV-GlucB) for multimodal imaging in vivo, as well as monitoring of EV levels in the organs and biofluids ex vivo after administration of EVs. Bioluminescence and fluorescence-mediated tomography imaging on mice displayed a predominant localization of intravenously administered EVs in the spleen followed by the liver. Monitoring EV signal in the organs, blood, and urine further revealed that the EVs first undergo a rapid distribution phase followed by a longer elimination phase via hepatic and renal routes within six hours, which are both faster than previously reported using dye-labeled EVs. Moreover, we demonstrate systemically injected EVs can be delivered to tumor sites within an hour following injection. Altogether, we show the EVs are dynamically processed in vivo with accurate spatiotemporal resolution and target a number of normal organs as well as tumors with implications for disease pathology and therapeutic design.


Molecular Therapy | 2012

Microvesicle-associated aav vector as a novel gene delivery system

Casey A. Maguire; Leonora Balaj; Sarada Sivaraman; Matheus H.W. Crommentuijn; Maria Ericsson; Lucia Mincheva-Nilsson; Vladimir Baranov; Davide Gianni; Bakhos A. Tannous; Miguel Sena-Esteves; Xandra O. Breakefield; Johan Skog

Adeno-associated virus (AAV) vectors have shown remarkable efficiency for gene delivery to cultured cells and in animal models of human disease. However, limitations to AAV vectored gene transfer exist after intravenous transfer, including off-target gene delivery (e.g., liver) and low transduction of target tissue. Here, we show that during production, a fraction of AAV vectors are associated with microvesicles/exosomes, termed vexosomes (vector-exosomes). AAV capsids associated with the surface and in the interior of microvesicles were visualized using electron microscopy. In cultured cells, vexosomes outperformed conventionally purified AAV vectors in transduction efficiency. We found that purified vexosomes were more resistant to a neutralizing anti-AAV antibody compared to conventionally purified AAV. Finally, we show that vexosomes bound to magnetic beads can be attracted to a magnetized area in cultured cells. Vexosomes represent a unique entity which offers a promising strategy to improve gene delivery.


PLOS ONE | 2010

Alzheimer's Disease Amyloid-β Links Lens and Brain Pathology in Down Syndrome

Juliet A. Moncaster; Roberto Pineda; Robert D. Moir; Suqian Lu; Mark A. Burton; Joy G. Ghosh; Maria Ericsson; Stephanie J. Soscia; Anca Mocofanescu; Rebecca D. Folkerth; Richard M. Robb; Jer R. Kuszak; John I. Clark; Rudolph E. Tanzi; David G. Hunter; Lee E. Goldstein

Down syndrome (DS, trisomy 21) is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans. In DS, triplication of chromosome 21 invariably includes the APP gene (21q21) encoding the Alzheimers disease (AD) amyloid precursor protein (APP). Triplication of the APP gene accelerates APP expression leading to cerebral accumulation of APP-derived amyloid-β peptides (Aβ), early-onset AD neuropathology, and age-dependent cognitive sequelae. The DS phenotype complex also includes distinctive early-onset cerulean cataracts of unknown etiology. Previously, we reported increased Aβ accumulation, co-localizing amyloid pathology, and disease-linked supranuclear cataracts in the ocular lenses of subjects with AD. Here, we investigate the hypothesis that related AD-linked Aβ pathology underlies the distinctive lens phenotype associated with DS. Ophthalmological examinations of DS subjects were correlated with phenotypic, histochemical, and biochemical analyses of lenses obtained from DS, AD, and normal control subjects. Evaluation of DS lenses revealed a characteristic pattern of supranuclear opacification accompanied by accelerated supranuclear Aβ accumulation, co-localizing amyloid pathology, and fiber cell cytoplasmic Aβ aggregates (∼5 to 50 nm) identical to the lens pathology identified in AD. Peptide sequencing, immunoblot analysis, and ELISA confirmed the identity and increased accumulation of Aβ in DS lenses. Incubation of synthetic Aβ with human lens protein promoted protein aggregation, amyloid formation, and light scattering that recapitulated the molecular pathology and clinical features observed in DS lenses. These results establish the genetic etiology of the distinctive lens phenotype in DS and identify the molecular origin and pathogenic mechanism by which lens pathology is expressed in this common chromosomal disorder. Moreover, these findings confirm increased Aβ accumulation as a key pathogenic determinant linking lens and brain pathology in both DS and AD.


Frontiers in Physiology | 2012

Alternative methods for characterization of extracellular vesicles.

Fatemeh Momen-Heravi; Leonora Balaj; Sara Alian; John Tigges; Vasilis Toxavidis; Maria Ericsson; Robert J. Distel; Alexander R. Ivanov; Johan Skog; Winston Patrick Kuo

Extracellular vesicles (ECVs) are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell–cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins, and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize ECVs. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some ECVs-specific evidence. Characterization of ECVs has also recently seen many advances with the use of Nanoparticle Tracking Analysis, flow cytometry, cryo-electron microscopy instruments, and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face.


Nature Neuroscience | 2015

The schizophrenia risk gene product miR-137 alters presynaptic plasticity

Sandra Siegert; Jinsoo Seo; Ester J. Kwon; Andrii Rudenko; Sukhee Cho; Wenyuan Wang; Zachary Flood; Anthony Martorell; Maria Ericsson; Alison E. Mungenast; Li-Huei Tsai

Noncoding variants in the human MIR137 gene locus increase schizophrenia risk with genome-wide significance. However, the functional consequence of these risk alleles is unknown. Here we examined induced human neurons harboring the minor alleles of four disease-associated single nucleotide polymorphisms in MIR137. We observed increased MIR137 levels compared to those in major allele–carrying cells. microRNA-137 gain of function caused downregulation of the presynaptic target genes complexin-1 (Cplx1), Nsf and synaptotagmin-1 (Syt1), leading to impaired vesicle release. In vivo, miR-137 gain of function resulted in changes in synaptic vesicle pool distribution, impaired induction of mossy fiber long-term potentiation and deficits in hippocampus-dependent learning and memory. By sequestering endogenous miR-137, we were able to ameliorate the synaptic phenotypes. Moreover, reinstatement of Syt1 expression partially restored synaptic plasticity, demonstrating the importance of Syt1 as a miR-137 target. Our data provide new insight into the mechanism by which miR-137 dysregulation can impair synaptic plasticity in the hippocampus.

Collaboration


Dive into the Maria Ericsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John I. Clark

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge