Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria F. Chan is active.

Publication


Featured researches published by Maria F. Chan.


Medical Physics | 2012

An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan

David Lewis; Andre Micke; Xiang Yu; Maria F. Chan

PURPOSEnRadiochromic film provides dose measurement at high spatial resolution, but often is not preferred for routine evaluation of patient-specific intensity modulated radiation therapy (IMRT) plans owing to ease-of-use factors. The authors have established an efficient protocol that combines calibration and measurement in a single scan and enables measurement results to be obtained in less than 30 min. This avoids complications due to postexposure changes in radiochromic film that delay the completion of a measurement, often for up to 24 h, in commonly used methods. In addition, the protocol addresses the accuracy and integrity of the measurement by eliminating environmental and interscan variability issues.nnnMETHODSnThe authors collected dose-response data from six production lots of Gafchromic EBT3 film and three production lots of EBT2 film at doses up to 480 cGy. In this work, the authors used seven different scanners of two different models-Epson 10000XL and V700; postexposure times before scanning from 30 min to 9 days; ambient temperatures for scanning spanning 11u2009°C; and two film orientations. Scanning was in 48-bit RGB format at 72 dpi resolution. Dose evaluation was conducted using a triple-channel dosimetry method. To evaluate the measurement protocol, patient specific IMRT and volumetric modulated arc therapy (VMAT) plans were exposed onto EBT3 films on a Varian Trilogy Linac. Film scanning was done following the protocol under a number of different conditions and the dose maps were analyzed to demonstrate the equivalence of results.nnnRESULTSnThe results indicated that the dose-response data could be fit by a set of related rational functions leading to the description of a generic calibration curve. A simplified dosimetry protocol was established where dose-response data for a specific film lot, scanner, and scanning conditions could be derived from two films exposed to known doses. In most cases only one calibrated exposure was required since the dose for one of the films could be zero. Using the Gamma test criterion of 2%∕2 mm to evaluate the measurements, similar passing rates ranging between about 95% and 99% for the fields studied were obtained from application films digitized under a variety of conditions all of them different than the conditions under which the calibration films were scanned.nnnCONCLUSIONSnThe authors have developed a simplified and efficient protocol to measure doses delivered by an IMRT or VMAT plan using only the patient film, one calibration film, one unexposed film, and applying a single scan to acquire a digital image for calculation and analysis. The simplification and timesaving offer a potential practical solution for using radiochromic film for routine treatment plan quality assurance without sacrificing spatial resolution for convenience.


Medical Physics | 2001

Delivery of intensity-modulated radiation therapy with a conventional multileaf collimator: comparison of dynamic and segmental methods.

Chen-Shou Chui; Maria F. Chan; Ellen Yorke; Spiridon V. Spirou; C. Clifton Ling

Intensity-modulated radiation therapy (IMRT) can be delivered with a conventional multileaf collimator (MLC), either in dynamic mode (DMLC) or in segmental mode (SMLC, also known as step-and-shoot). The advantage of DMLC is its ability to deliver the desired intensity profile produced by inverse planning with a high degree of fidelity. The SMLC method, on the other hand, resembles treatment with multiple static fields, and can be more easily verified. However, the use of SMLC requires that the desired profile be approximated by discrete levels of intensity, which may lead to degradation in the delivered dose distribution. Clearly, the results of SMLC delivery depend on the number of levels and the spatial resolution of the intensity distribution. In this work, we compare the DMLC method and the SMLC method employing different numbers of levels and different spatial resolutions. Three disease sites were studied: prostate, nasopharynx, and breast, with three cases for each. In general, a 5- to 10-level SMLC plan produced results comparable to that from a DMLC plan. The target coverage is improved by increasing the number of levels while critical organs are better protected with finer spatial resolutions. The beam-on-time (MUs) requirement for SMLC was approximately 20% less than DMLC, but the delivery time (in minutes) was about twice as long. Thus, the choice depends on many factors including machine capability, quality assurance, target coverage, critical organ protection, beam-on-time, delivery time, and other clinical considerations.


Medical Physics | 2013

Evaluating IMRT and VMAT dose accuracy: Practical examples of failure to detect systematic errors when applying a commonly used metric and action levels

Benjamin E. Nelms; Maria F. Chan; Geneviève Jarry; Matthieu Lemire; John Lowden; Carnell Hampton; Vladimir Feygelman

PURPOSEnThis study (1) examines a variety of real-world cases where systematic errors were not detected by widely accepted methods for IMRT/VMAT dosimetric accuracy evaluation, and (2) drills-down to identify failure modes and their corresponding means for detection, diagnosis, and mitigation. The primary goal of detailing these case studies is to explore different, more sensitive methods and metrics that could be used more effectively for evaluating accuracy of dose algorithms, delivery systems, and QA devices.nnnMETHODSnThe authors present seven real-world case studies representing a variety of combinations of the treatment planning system (TPS), linac, delivery modality, and systematic error type. These case studies are typical to what might be used as part of an IMRT or VMAT commissioning test suite, varying in complexity. Each case study is analyzed according to TG-119 instructions for gamma passing rates and action levels for per-beam and/or composite plan dosimetric QA. Then, each case study is analyzed in-depth with advanced diagnostic methods (dose profile examination, EPID-based measurements, dose difference pattern analysis, 3D measurement-guided dose reconstruction, and dose grid inspection) and more sensitive metrics (2% local normalization/2 mm DTA and estimated DVH comparisons).nnnRESULTSnFor these case studies, the conventional 3%/3 mm gamma passing rates exceeded 99% for IMRT per-beam analyses and ranged from 93.9% to 100% for composite plan dose analysis, well above the TG-119 action levels of 90% and 88%, respectively. However, all cases had systematic errors that were detected only by using advanced diagnostic techniques and more sensitive metrics. The systematic errors caused variable but noteworthy impact, including estimated target dose coverage loss of up to 5.5% and local dose deviations up to 31.5%. Types of errors included TPS model settings, algorithm limitations, and modeling and alignment of QA phantoms in the TPS. Most of the errors were correctable after detection and diagnosis, and the uncorrectable errors provided useful information about system limitations, which is another key element of system commissioning.nnnCONCLUSIONSnMany forms of relevant systematic errors can go undetected when the currently prevalent metrics for IMRT∕VMAT commissioning are used. If alternative methods and metrics are used instead of (or in addition to) the conventional metrics, these errors are more likely to be detected, and only once they are detected can they be properly diagnosed and rooted out of the system. Removing systematic errors should be a goal not only of commissioning by the end users but also product validation by the manufacturers. For any systematic errors that cannot be removed, detecting and quantifying them is important as it will help the physicist understand the limits of the system and work with the manufacturer on improvements. In summary, IMRT and VMAT commissioning, along with product validation, would benefit from the retirement of the 3%/3 mm passing rates as a primary metric of performance, and the adoption instead of tighter tolerances, more diligent diagnostics, and more thorough analysis.


Medical Physics | 2012

Linearization of dose-response curve of the radiochromic film dosimetry system.

Slobodan Devic; Nada Tomic; Saad Aldelaijan; F DeBlois; J Seuntjens; Maria F. Chan; Dave Lewis

PURPOSEnDespite numerous advantages of radiochromic film dosimeter (high spatial resolution, near tissue equivalence, low energy dependence) to measure a relative dose distribution with film, one needs to first measure an absolute dose (following previously established reference dosimetry protocol) and then convert measured absolute dose values into relative doses. In this work, we present result of our efforts to obtain a functional form that would linearize the inherently nonlinear dose-response curve of the radiochromic film dosimetry system.nnnMETHODSnFunctional form [ζ = (-1)[middle dot]netOD((2∕3))∕ln(netOD)] was derived from calibration curves of various previously established radiochromic film dosimetry systems. In order to test the invariance of the proposed functional form with respect to the film model used we tested it with three different GAFCHROMIC™ film models (EBT, EBT2, and EBT3) irradiated to various doses and scanned on a same scanner. For one of the film models (EBT2), we tested the invariance of the functional form to the scanner model used by scanning irradiated film pieces with three different flatbed scanner models (Epson V700, 1680, and 10000XL). To test our hypothesis that the proposed functional argument linearizes the response of the radiochromic film dosimetry system, verification tests have been performed in clinical applications: percent depth dose measurements, IMRT quality assurance (QA), and brachytherapy QA.nnnRESULTSnObtained R(2) values indicate that the choice of the functional form of the new argument appropriately linearizes the dose response of the radiochromic film dosimetry system we used. The linear behavior was insensitive to both film model and flatbed scanner model used. Measured PDD values using the green channel response of the GAFCHROMIC™ EBT3 film model are well within ±2% window of the local relative dose value when compared to the tabulated Cobalt-60 data. It was also found that criteria of 3%∕3 mm for an IMRT QA plan and 3%∕2 mm for a brachytherapy QA plan are passing 95% gamma function points.nnnCONCLUSIONSnIn this paper, we demonstrate the use of functional argument to linearize the inherently nonlinear response of a radiochromic film based reference dosimetry system. In this way, relative dosimetry can be conveniently performed using radiochromic film dosimetry system without the need of establishing calibration curve.


Medical Physics | 2009

Photon beam dosimetry in the superficial buildup region using radiochromic EBT film stack.

Sou-Tung Chiu-Tsao; Maria F. Chan

It has been a challenge to perform accurate 2D or 3D dosimetry in the surface region with steep dose gradient for megavoltage photon beams. We developed a dosimetry method in the superficial buildup region for the 6 and 15 MV photon beams using a radiochromic EBT film stack. Eight radiochromic EBT film strips (3 x 20 x 0.024 cm3) stacked together formed a 3D dosimeter. The film stack was positioned above a polystyrene phantom and surrounded by Solid Water slabs (0.2 cm) with the top film layer at 100 cm SSD. A 10 x 10 cm2 open field was used to irradiate the film stack with 1000 MU. All films were scanned using Epson 4870 flatbed scanner with transmission mode, 48 bit color, and 150 dpi (0.017 cm pixel resolution). The pixel values were converted to doses using an established calibration curve. This method allowed dose measurement for depths from 0.012 to 0.18 cm with fine spatial resolution (0.017 cm horizontally and 0.024 cm vertically). For each energy modality, we obtained both the central axis percent depth doses and the beam profiles along the central line covering the primary field and peripheral region at each depth. The primary field doses varied steeply with depth, while those in the peripheral region were weakly dependent on depth. For the 6 MV and 15 MV photon beams, (1) the central axis percent depth doses in the eight film layers ranged from 22% to 66% and from 15% to 44%, respectively; (2) the extrapolated percent depth doses at d = 0 were 15% and 14%, respectively. Agreement with the previously reported central axis percent depth doses in this region using parallel plate thin window ion chamber and ultrathin TLD was observed. The percent depth doses and beam profiles data can be incorporated in the treatment planning system for more accurate assessment of the doses to skin and shallow tumors to accomplish more accurate calculation results in the clinical usage.


Medical Physics | 2014

Correcting lateral response artifacts from flatbed scanners for radiochromic film dosimetry

David Lewis; Maria F. Chan

PURPOSEnA known factor affecting the accuracy of radiochromic film dosimetry is the lateral response artifact (LRA) induced by nonuniform response of a flatbed scanner in the direction perpendicular to the scan direction. This work reports a practical solution to eliminate such artifacts for all forms of dose QA.nnnMETHODSnEBT3 films from a single production lot (02181401) cut into rectangular 4 × 5 cm(2) pieces, with the long dimension parallel to the long dimension of the original 20.3 × 25.4 cm(2) sheets, were exposed at a depth of 5 cm on a Varian Trilogy at the center of a 20 × 20 cm(2) open field at seven doses between 50 and 1600 cGy using 6 MV photons. These films together with an unexposed film from the same production lot were lined one next to the other on an Epson 10000 XL or 11000 XL scanner in portrait orientation with their long dimension parallel to the scan direction. Scanned images were then obtained with the line of films positioned at seven discrete lateral locations perpendicular to the scan direction. The process was repeated in landscape orientation and on three other Epson scanners. Data were also collected for three additional production lots of EBT3 film (11051302, 03031401, and 03171403). From measurements at the various lateral positions, the scanner response was determined as a function of the lateral position of the scanned film. For a given color channel X, the response at any lateral position L is related to the response at the center, C, of the scanner by Response(C, D, X) = A(L,X) + B(L,X) ⋅ Response(L, D, X), where D is dose and the coefficients A(L,X) and B(L,X) are determined from the film measurements at the center of the scanner and six other discrete lateral positions. The values at intermediate lateral positions were obtained by linear interpolation. The coefficients were determined for the red, green, and blue color channels, preserving the ability to apply triple-channel dosimetry once corrections were applied to compensate for the lateral position response artifact. To validate this method, corrections were applied to several films that were exposed to 15 × 15 cm(2) open fields and large IMRT and VMAT fields and scanned at the extreme edges of the scan window in addition to the central location. Calibration and response data were used to generate dose maps and perform gamma analysis using single- or triple-channel dosimetry with FilmQAPro 2014 software.nnnRESULTSnThe authors study found that calibration curves at the different lateral positions could be correlated by a simple two-point rescaling using the response for unexposed film as well as the response of film exposed at high doses between 800 and 1600 cGy. The coefficients A(L,X) and BL,X for each color channel X were found to be independent of dose at each lateral location L. This made it possible to apply the relationship Response(C, D, X) = A(L,X) + B(L,X) ⋅ Response(L, D, X), to the raw film responses, permitting correction of the response values at any lateral position to an equivalent response, as if that part of the film was located at the center of the scanner. This correction method was validated for several films exposed to open as well as large IMRT and VMAT fields.nnnCONCLUSIONSnThe work reported elaborates on the process using the correction procedures to eliminate the lateral response artifact and demonstrates improvements in the accuracy of radiochromic film dosimetry for the radiation therapy quality assurance applications.


Biomedical Imaging and Intervention Journal | 2011

Evaluation of imaging performance of major image guidance systems

Maria F. Chan; J Yang; Y Song; C Burman; P Chan; S Li

Purpose: The imaging characteristics of two popular kV cone-beam CT (CBCT) and two MVCT systems utilised in image-guided radiation therapy (IGRT) were evaluated. Materials and methods: The study was performed on Varian Clinac iX, Elekta Synergy S, Siemens Oncor, and Tomotherapy. A CT phantom (Catphan-504, Phantom Laboratory, Salem, NY) was scanned for measurements of image quality including image noise, uniformity, density accuracy, spatial resolution, contrast linearity, and contrast resolution. The measurement results were analysed using in-house image analysis software. Reproducibility, position correction, and geometric accuracy were also evaluated with markers in a smaller alignment phantom. The performance evaluation compared volumetric image properties from these four systems with those from a conventional diagnostic CT (CCT). Results: It was shown that the linearity of the two kV CBCT was fairly consistent with CCT. The Elekta CBCT with half-circle 27-cm FOV had higher CT numbers than the other three systems. The image noises of the Elekta kV CBCT, Siemens MV CBCT, and Tomotherapy fan-beam CT (FBCT) are about 2–4 times higher than that of the Varian CBCT. The spatial resolutions of two kV CBCTs and two MV CBCTs were 8-11 lp/cm and 3-5 lp/cm, respectively. Conclusion: Elekta CBCT provided a faster image reconstruction and low dose per scan for half-circle scanning. Varian CBCT had relatively lower image noise. Tomotherapy FBCT had the best uniformity.


Medical Physics | 2010

Evaluation of two-dimensional bolus effect of immobilization/support devices on skin doses: a radiochromic EBT film dosimetry study in phantom.

Sou-Tung Chiu-Tsao; Maria F. Chan

PURPOSEnIn this study, the authors have quantified the two-dimensional (2D) perspective of skin dose increase using EBT film dosimetry in phantom in the presence of patient immobilization devices during conventional and IMRT treatments.nnnMETHODSnFor 6 MV conventional photon field, the authors evaluated and quantified the 2D bolus effect on skin doses for six different common patient immobilization/support devices, including carbon fiber grid with Mylar sheet, Orfit carbon fiber base plate, balsa wood board, Styrofoam, perforated AquaPlast sheet, and alpha-cradle. For 6 and 15 MV IMRT fields, a stack of two film layers positioned above a solid phantom was exposed at the air interface or in the presence of a patient alpha-cradle. All the films were scanned and the pixel values were converted to doses based on an established calibration curve. The authors determined the 2D skin dose distributions, isodose curves, and cross-sectional profiles at the surface layers with or without the immobilization/support device. The authors also generated and compared the dose area histograms (DAHs) and dose area products from the 2D skin dose distributions.nnnRESULTSnIn contrast with 20% relative dose [(RD) dose relative to dmax on central axis] at 0.0153 cm in the film layer for 6 MV 10 x 10 cm2 open field, the average RDs at the same depth in the film layer were 71%, 69%, 55%, and 57% for Orfit, balsa wood, Styrofoam, and alpha-cradle, respectively. At the same depth, the RDs were 54% under a strut and 26% between neighboring struts of a carbon fiber grid with Mylar sheet, and between 34% and 56% for stretched perforated AquaPlast sheet. In the presence of the alpha-cradle for the 6 MV (15 MV) IMRT fields, the hot spot doses at the effective measurement depths of 0.0153 and 0.0459 cm were 140% and 150%, (83% and 89%), respectively, of the isocenter dose. The enhancement factor was defined as the ratio of a given DAH parameter (minimum dose received in a given area) with and without the support device. For 6 MV conventional 10 x 10 cm2 field, the enhancement factor was the highest (3.4) for the Orfit carbon fiber plate. As for the IMRT field, the enhancement factors varied with the size of the area of interest and were as high as 3.8 (4.3) at the hot spot of 5 cm2 area in the top film layer (0.0153 cm) for 6 MV (15 MV) beams.nnnCONCLUSIONSnSignificant 2D bolus effect on skin dose in the presence of patient support and immobilization devices was confirmed and quantified with EBT film dosimetry. Furthermore, the EBT film has potential application for in vivo monitoring of the 2D skin dose distributions during patient treatments.


Medical Physics | 2013

Three independent one-dimensional margins for single-fraction frameless stereotactic radiosurgery brain cases using CBCT.

Q Zhang; Maria F. Chan; C Burman; Yulin Song; Mutian Zhang

PURPOSEnSetting a proper margin is crucial for not only delivering the required radiation dose to a target volume, but also reducing the unnecessary radiation to the adjacent organs at risk. This study investigated the independent one-dimensional symmetric and asymmetric margins between the clinical target volume (CTV) and the planning target volume (PTV) for linac-based single-fraction frameless stereotactic radiosurgery (SRS).nnnMETHODSnThe authors assumed a Dirac delta function for the systematic error of a specific machine and a Gaussian function for the residual setup errors. Margin formulas were then derived in details to arrive at a suitable CTV-to-PTV margin for single-fraction frameless SRS. Such a margin ensured that the CTV would receive the prescribed dose in 95% of the patients. To validate our margin formalism, the authors retrospectively analyzed nine patients who were previously treated with noncoplanar conformal beams. Cone-beam computed tomography (CBCT) was used in the patient setup. The isocenter shifts between the CBCT and linac were measured for a Varian Trilogy linear accelerator for three months. For each plan, the authors shifted the isocenter of the plan in each direction by ±3 mm simultaneously to simulate the worst setup scenario. Subsequently, the asymptotic behavior of the CTV V80% for each patient was studied as the setup error approached the CTV-PTV margin.nnnRESULTSnThe authors found that the proper margin for single-fraction frameless SRS cases with brain cancer was about 3 mm for the machine investigated in this study. The isocenter shifts between the CBCT and the linac remained almost constant over a period of three months for this specific machine. This confirmed our assumption that the machine systematic error distribution could be approximated as a delta function. This definition is especially relevant to a single-fraction treatment. The prescribed dose coverage for all the patients investigated was 96.1% ± 5.5% with an extreme 3-mm setup error in all three directions simultaneously. It was found that the effect of the setup error on dose coverage was tumor location dependent. It mostly affected the tumors located in the posterior part of the brain, resulting in a minimum coverage of approximately 72%. This was entirely due to the unique geometry of the posterior head.nnnCONCLUSIONSnMargin expansion formulas were derived for single-fraction frameless SRS such that the CTV would receive the prescribed dose in 95% of the patients treated for brain cancer. The margins defined in this study are machine-specific and account for nonzero mean systematic error. The margin for single-fraction SRS for a group of machines was also derived in this paper.


Technology in Cancer Research & Treatment | 2015

Qualitative evaluation of fiducial markers for radiotherapy imaging.

Maria F. Chan; Gil’ad N. Cohen; Joseph O. Deasy

Purpose: To evaluate visibility, artifacts, and distortions of various commercial markers in magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound imaging used for radiotherapy planning and treatment guidance. Methods: We compare 2 solid gold markers, 4 gold coils, and 1 polymer marker from 3 vendors. Imaging modalities used were 3-T and 1.5-T GE MRIs, Siemens Sequoia 512 Ultrasound, Phillips Big Bore CT, Varian Trilogy linear accelerator (cone-beam CT [CBCT], on-board imager kilovoltage [OBI-kV], electronic portal imaging device megavoltage [EPID-MV]), and Medtronic O-ARM CBCT. Markers were imaged in a 30 × 30 × 10 cm3 custom bolus phantom. In one experiment, Surgilube was used around the markers to reduce air gaps. Images were saved in Digital Imaging and Communications in Medicine (DICOM) format and analyzed using an in-house software. Profiles across the markers were used for objective comparison of the markers’ signals. The visibility and artifacts/distortions produced by each marker were assessed qualitatively and quantitatively. Results: All markers are visible in CT, CBCT, OBI-kV, and ultrasound. Gold markers below 0.75 mm in diameter are not visible in EPID-MV images. The larger the markers, the more CT and CBCT image artifacts there are, yet the degree of the artifact depends on scan parameters and the scanner itself. Visibility of gold coils of 0.75 mm diameter or larger is comparable across all imaging modalities studied. The polymer marker causes minimal artifacts in CT and CBCT but has poor visibility in EPID-MV. Gold coils of 0.5 mm exhibit poor visibility in MRI and EPID-MV due to their small size. Gold markers are more visible in 3-T T1 gradient-recalled echo than in 1.5-T T1 fast spin-echo, depending on the scan sequence. In this study, all markers are clearly visible on ultrasound. Conclusion: All gold markers are visible in CT, CBCT, kV, and ultrasound; however, only the large diameter markers are visible in MV. When MR and EPID-MV imagers are used, the selection of fiducial markers is not straightforward. For hybrid kV/MV image-guided radiotherapy imaging, larger diameter markers are suggested. If using kV imaging alone, smaller sized markers may be used in smaller sized patients in order to reduce artifacts. Only larger diameter gold markers are visible across all imaging modalities.

Collaboration


Dive into the Maria F. Chan's collaboration.

Top Co-Authors

Avatar

C Burman

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yulin Song

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Karen D. Schupak

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

J Li

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chen-Shou Chui

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Sim

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

C. Clifton Ling

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Q Zhang

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge