Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria G. Pachiadaki is active.

Publication


Featured researches published by Maria G. Pachiadaki.


FEMS Microbiology Ecology | 2010

Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea)

Maria G. Pachiadaki; Vasilios Lykousis; Euripides G. Stefanou; Konstantinos Ar. Kormas

We investigated 16S rRNA gene diversity at a high sediment depth resolution (every 5 cm, top 30 cm) in an active site of the Kazan mud volcano, East Mediterranean Sea. A total of 242 archaeal and 374 bacterial clones were analysed, which were attributed to 38 and 205 unique phylotypes, respectively (> or = 98% similarity). Most of the archaeal phylotypes were related to ANME-1, -2 and -3 members originating from habitats where anaerobic oxidation of methane (AOM) occurs, although they occurred in sediment layers with no apparent AOM (below the sulphate depletion depth). Proteobacteria were the most abundant and diverse bacterial group, with the Gammaproteobacteria dominating in most sediment layers and these were related to phylotypes involved in methane cycling. The Deltaproteobacteria included several of the sulphate-reducers related to AOM. The rest of the bacterial phylotypes belonged to 15 known phyla and three unaffiliated groups, with representatives from similar habitats. Diversity index H was in the range 0.56-1.73 and 1.47-3.82 for Archaea and Bacteria, respectively, revealing different depth patterns for the two groups. At 15 and 20 cm below the sea floor, the prokaryotic communities were highly similar, hosting AOM-specific Archaea and Bacteria. Our study revealed different dominant phyla in proximate sediment layers.


Microbial Ecology | 2011

Diversity and spatial distribution of Prokaryotic communities along a sediment vertical profile of a Deep-Sea Mud Volcano

Maria G. Pachiadaki; Argyri Kallionaki; A. Dählmann; Gert J. de Lange; Konstantinos Ar. Kormas

We investigated the top 30-cm sediment prokaryotic community structure in 5-cm spatial resolution, at an active site of the Amsterdam mud volcano, East Mediterranean Sea, based on the 16S rRNA gene diversity. A total of 339 and 526 sequences were retrieved, corresponding to 25 and 213 unique (≥98% similarity) phylotypes of Archaea and Bacteria, respectively, in all depths. The Shannon–Wiener diversity index H was higher for Bacteria (1.92–4.03) than for Archaea (0.99–1.91) and varied differently between the two groups. Archaea were dominated by anaerobic methanotrophs ANME-1, -2 and -3 groups and were related to phylotypes involved in anaerobic oxidation of methane from similar habitats. The much more complex Bacteria community consisted of 20 phylogenetic groups at the phylum/candidate division level. Proteobacteria, in particular δ-Proteobacteria, was the dominant group. In most sediment layers, the dominant phylotypes of both the Archaea and Bacteria communities were found in neighbouring layers, suggesting some overlap in species richness. The similarity of certain prokaryotic communities was also depicted by using four different similarity indices. The direct comparison of the retrieved phylotypes with those from the Kazan mud volcano of the same field revealed that 40.0% of the Archaea and 16.9% of the Bacteria phylotypes are common between the two systems. The majority of these phylotypes are closely related to phylotypes originating from other mud volcanoes, implying a degree of endemicity in these systems.


Environmental Microbiology | 2015

Depth shapes α‐ and β‐diversities of microbial eukaryotes in surficial sediments of coastal ecosystems

Jun Gong; Fei Shi; Bin Ma; Jun Dong; Maria G. Pachiadaki; Xiaoli Zhang; Virginia P. Edgcomb

Little is known about the relative influence of historic processes and environmental gradients on shaping the diversity of single-celled eukaryotes in marine benthos. By combining pyrosequencing of 18S ribosomal RNA genes with data on multiple environmental factors, we investigated the diversity of microeukaryotes in surficial sediments of three basins of the Yellow Sea Large Marine Ecosystem. A considerable proportion (about 20%) of reads was affiliated with known parasitoid protists. Dinophyta and Ciliophora appeared dominant in terms of relative proportion of reads and operational taxonomic unit (OTU) richness. Overall, OTU richness of benthic microeukaryotes decreased with increasing water depth and decreasing pH. While community composition was significantly different among basins, partial Mantel tests indicated a depth-decay pattern of community similarity, whereby water depth, rather than geographic distance or environment, shaped β-diversity of benthic microeukaryotes (including both the abundant and the rare biosphere) on a regional scale. Similar hydrographic and mineralogical factors contributed to the biogeography of both the abundant and the rare OTUs. The trace metal vanadium had a significant effect on the biogeography of the rare biosphere. Our study sheds new light on the composition, diversity patterns and underlying mechanisms of single-celled eukaryote distribution in surficial sediments of coastal oceans.


Frontiers in Microbiology | 2014

Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments

Joan M. Bernhard; Konstantinos Ar. Kormas; Maria G. Pachiadaki; Emma Rocke; David J. Beaudoin; Colin R. Morrison; Pieter T. Visscher; Alec Cobban; Victoria R. Starczak; Virginia P. Edgcomb

Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L’ Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers.


The ISME Journal | 2014

Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin

Maria G. Pachiadaki; Michail M. Yakimov; Violetta LaCono; Edward R. Leadbetter; Virginia P. Edgcomb

Deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea are considered some of the most hostile environments on Earth. Little is known about the biochemical adaptations of microorganisms living in these habitats. This first metatranscriptome analysis of DHAB samples provides significant insights into shifts in metabolic activities of microorganisms as physicochemical conditions change from deep Mediterranean sea water to brine. The analysis of Thetis DHAB interface indicates that sulfate reduction occurs in both the upper (7.0–16.3% salinity) and lower (21.4–27.6%) halocline, but that expression of dissimilatory sulfate reductase is reduced in the more hypersaline lower halocline. High dark-carbon assimilation rates in the upper interface coincided with high abundance of transcripts for ribulose 1,5-bisphosphate carboxylase affiliated to sulfur-oxidizing bacteria. In the lower interface, increased expression of genes associated with methane metabolism and osmoregulation is noted. In addition, in this layer, nitrogenase transcripts affiliated to uncultivated putative methanotrophic archaea were detected, implying nitrogen fixation in this anoxic habitat, and providing evidence of linked carbon, nitrogen and sulfur cycles.


Journal of Eukaryotic Microbiology | 2014

Ciliates along Oxyclines of Permanently Stratified Marine Water Columns

Virginia P. Edgcomb; Maria G. Pachiadaki

Studies of microbial communities in areas of the world where permanent marine water column oxyclines exist suggest they are “hotspots” of microbial activity, and that these water features and the anoxic waters below them are inhabited by diverse protist taxa, including ciliates. These communities have minimal taxonomic overlap with those in overlying oxic water columns. Some ciliate taxa have been detected in multiple locations where these stable water column oxyclines exist; however, differences in such factors as hydrochemistry in the habitats that have been studied suggest local selection for distinct communities. We compare published data on ciliate communities from studies of deep marine water column oxyclines in Caricao Basin, Venezuela, and the Black Sea, with data from coastal, shallower oxycline waters in Framvaren and Mariager fjords, and from several deep‐sea hypersaline anoxic basins in the Eastern Mediterranean Sea. Putative symbioses between Bacteria, Archaea, and ciliates observed along these oxyclines suggests a strategy of cooperative metabolism for survival that includes chemosynthetic autotrophy and exchanges of metabolic intermediates or end products between hosts and their prokaryotic partners.


FEMS Microbiology Ecology | 2014

Protistan grazing in a meromictic freshwater lake with anoxic bottom water

Andreas Oikonomou; Maria G. Pachiadaki; Thorsten Stoeck

Phagotrophic protists are an important mortality factor of prokaryotes in most aquatic habitats. However, no study has assessed protistan grazing as loss factor of bacterial biomass across the stratification gradient of a temperate freshwater meromictic lake. Protistan grazing effect was quantified in the mixolimnion, the transition zone, and the sulfidic anoxic monimolimnion of Lake Alatsee (Germany). Grazing experiments were performed using prey analogues from the natural prokaryotic assemblage. Daily grazing effect declined from the mixolimnion to the monimolimnion. Heterotrophic flagellates were phagotrophically active in all three water horizons and the main grazers in the monimolimnion. Pigmented flagellates accounted for 70% of total grazing in the mixolimnion and ciliates only for a small fraction of grazing in each depth. Prokaryotic biomass removal peaked in the interface, but protistan impact on the respective prokaryotic abundance was low. Grazing in the anoxic monimolimnion was negligible, with prokaryotic turnover rate being only 0.4% of standing stock. Our results support the assumption that protistan predation in anoxic waters is lower than in oxygenated ones and identify the interface as a microhabitat that supports high grazer biomass, pinpointing the importance of purple sulfur bacteria as carbon source for the upper mixolimnion and the bottom monimolimnion.


Frontiers in Microbiology | 2016

Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy

Maria G. Pachiadaki; Vanessa Rédou; David J. Beaudoin; Gaëtan Burgaud; Virginia P. Edgcomb

The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere.


PLOS ONE | 2015

Protist Community Grazing on Prokaryotic Prey in Deep Ocean Water Masses

Emma Rocke; Maria G. Pachiadaki; Alec Cobban; Elizabeth B. Kujawinski; Virginia P. Edgcomb

Oceanic protist grazing at mesopelagic and bathypelagic depths, and their subsequent effects on trophic links between eukaryotes and prokaryotes, are not well constrained. Recent studies show evidence of higher than expected grazing activity by protists down to mesopelagic depths. This study provides the first exploration of protist grazing in the bathypelagic North Atlantic Deep Water (NADW). Grazing was measured throughout the water column at three stations in the South Atlantic using fluorescently-labeled prey analogues. Grazing in the deep Antarctic Intermediate water (AAIW) and NADW at all three stations removed 3.79% ± 1.72% to 31.14% ± 8.24% of the standing prokaryote stock. These results imply that protist grazing may be a significant source of labile organic carbon at certain meso- and bathypelagic depths.


Advances in Ecology | 2014

Living at the Limits: Evidence for Microbial Eukaryotes Thriving under Pressure in Deep Anoxic, Hypersaline Habitats

Thorsten Stoeck; Sabine Filker; Virginia P. Edgcomb; William D. Orsi; Michail M. Yakimov; Maria G. Pachiadaki; Hans-Werner Breiner; Violetta LaCono; Alexandra Stock

The advent of molecular tools in microbial ecology paved the way to exploit the diversity of microbes in extreme environments. Here, we review these tools as applied in one of the most polyextreme habitats known on our planet, namely, deep hypersaline anoxic basins (DHABs), located at ca. 3000–3500 m depth in the Eastern Mediterranean Sea. Molecular gene signatures amplified from environmental DHAB samples identified a high degree of genetic novelty, as well as distinct communities in the DHABs. Canonical correspondence analyses provided strong evidence that salinity, ion composition, and anoxia were the strongest selection factors shaping protistan community structures, largely preventing cross-colonization among the individual basins. Thus, each investigated basin represents a unique habitat (“isolated islands of evolution”), making DHABs ideal model sites to test evolutionary hypotheses. Fluorescence in situ hybridization assays using specifically designed probes revealed that the obtained genetic signatures indeed originated from indigenous polyextremophiles. Electron microscopy imaging revealed unknown ciliates densely covered with prokaryote ectosymbionts, which may enable adaptations of eukaryotes to DHAB conditions. The research reviewed here significantly advanced our knowledge on polyextremophile eukaryotes, which are excellent models for a number of biological research areas, including ecology, diversity, biotechnology, evolutionary research, physiology, and astrobiology.

Collaboration


Dive into the Maria G. Pachiadaki's collaboration.

Top Co-Authors

Avatar

Virginia P. Edgcomb

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joan M. Bernhard

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Michail M. Yakimov

Immanuel Kant Baltic Federal University

View shared research outputs
Top Co-Authors

Avatar

Craig D. Taylor

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

David J. Beaudoin

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Thorsten Stoeck

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward R. Leadbetter

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Alec Cobban

Woods Hole Oceanographic Institution

View shared research outputs
Researchain Logo
Decentralizing Knowledge