Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Gregori is active.

Publication


Featured researches published by Maria Gregori.


Biomaterials | 2010

Lipid-based Nanoparticles with high binding affinity for amyloid-β1-42 peptide

Marco Gobbi; Francesca Re; Mara Canovi; Marten Beeg; Maria Gregori; Silvia Sesana; Sandro Sonnino; Doriano Brogioli; Claudia Musicanti; Paolo Gasco; Mario Salmona; Massimo Masserini

The neurotoxic beta-amyloid peptide (Abeta), formed in anomalous amounts in Alzheimers disease (AD), is released as monomer and then undergoes aggregation forming oligomers, fibrils and plaques in diseased brains. Abeta aggregates are considered as possible targets for therapy and/or diagnosis of AD. Since nanoparticles (NPs) are promising vehicles for imaging probes and therapeutic agents, we realized and characterized two types of NPs (liposomes and solid lipid nanoparticles, 145 and 76 nm average size, respectively) functionalized to target Abeta(1-42) with high affinity. Preliminary immunostaining studies identified anionic phospholipids [phosphatidic acid (PA) and cardiolipin (CL)] as suitable Abeta(1-42) ligands. PA/CL-functionalized, but not plain, NPs interacted with Abeta(1-42) aggregates as indicated by ultracentrifugation experiments, in which binding reaction occurred in solution, and by Surface Plasmon Resonance (SPR) experiments, in which NPs flowed onto immobilized Abeta(1-42). All these experiments were carried out in buffered saline. SPR studies indicated that, when exposed on NPs surface, PA/CL display very high affinity for Abeta(1-42) fibrils (22-60 nm), likely because of the occurrence of multivalent interactions which markedly decrease the dissociation of PA/CL NPs from Abeta. Noteworthy, PA/CL NPs did not bind to bovine serum albumin. The PA/CL NPs described in this work are endowed with the highest affinity for Abeta so far reported. These characteristics make our NPs a very promising vector for the targeted delivery of potential new diagnostic and therapeutic molecules to be tested in appropriate animal models.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model

Francesca Re; Ilaria Cambianica; Cristiano Zona; Silvia Sesana; Maria Gregori; Roberta Rigolio; Barbara La Ferla; Francesco Nicotra; Gianluigi Forloni; Alfredo Cagnotto; Mario Salmona; Massimo Masserini; Giulio Sancini

A promising strategy to enhance blood-brain barrier penetration by drugs is the functionalization of nanocarriers with uptake-facilitating ligands. We studied the cellular uptake, by cultured RBE4 brain capillary endothelial cells, of nanoliposomes (NLs) covalently coupled with monomer or tandem dimer of apolipoprotein E (ApoE)-derived peptides (residues 141-150), at various densities. NLs without functionalization did not show either relevant membrane accumulation or cellular uptake, as monitored by confocal microscopy and quantified by fluorescence-activated cell sorting. Functionalization with peptides mediated an efficient NLs uptake that increased with peptide density; NLs carrying monomeric peptide performed the best. Moreover, we studied the ability of ApoE-NLs to enhance the transport of a drug payload through a RBE4 cell monolayer. The permeability of a tritiated curcumin derivative was enhanced after its entrapment into ApoE-NLs, in particular those functionalized with the dimer (+83% with respect to free drug, P < 0.01). Thus, these NLs appear particularly suitable for implementing further strategies for drug brain targeting.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer's Aβ peptide.

Mark Taylor; Susan Moore; Spyridon Mourtas; Anna Niarakis; Francesca Re; Cristiano Zona; Barbara La Ferla; Francesco Nicotra; Massimo Masserini; Sophia G. Antimisiaris; Maria Gregori; David Allsop

The effect of various types of nanoliposomes (associated with curcumin, phosphatidic acid, cardiolipin, or GM1 ganglioside) on the aggregation of the amyloid-β(1-42) (Aβ(1-42)) peptide was investigated. Nanoliposomes incorporating curcumin (curcumin-liposomes) were prepared by adding curcumin in the lipid phase during liposome preparation, whereas curcumin surface-decorated liposomes were prepared by using a curcumin-lipid conjugate (lipid-S-curcumin liposomes) or by attaching a curcumin derivative on preformed liposomes by click chemistry (click-curcumin liposomes). The lipid ligands (phosphatidic acid, cardiolipin, or GM1) were also incorporated into nanoliposomes during their formation. All nanoliposomes with curcumin, or the curcumin derivative, were able to inhibit the formation of fibrillar and/or oligomeric Aβ in vitro. Of the three forms of curcumin liposomes tested, the click-curcumin type was by far the most effective. Liposomes with lipid ligands only inhibited Aβ fibril and oligomer formation at a very high ratio of liposome to peptide. Curcumin-based liposomes could be further developed as a novel treatment for Alzheimers disease.


International Journal of Nanomedicine | 2013

Liposomes functionalized to overcome the blood–brain barrier and to target amyloid-β peptide: the chemical design affects the permeability across an in vitro model

Elisa Salvati; Francesca Re; Silvia Sesana; Ilaria Cambianica; Giulio Sancini; Massimo Masserini; Maria Gregori

Purpose We investigated the ability of amyloid-β-targeting liposomes, decorated with an anti-transferrin receptor antibody, to cross the blood–brain barrier (BBB), comparing two antibody ligation techniques. Methods Fluorescent or radiolabeled liposomes composed of sphingomyelin/cholesterol and containing phosphatidic acid, known to bind amyloid-β, were further functionalized with the anti-transferrin receptor antibody RI7217. Two different techniques were used to attach RI7217 to the liposomes surface: biotin/streptavidin linkage or thiol–maleimide covalent ligation. Surface plasmon resonance (SPR) and immunoblotting were employed to assess the nanoparticles’ binding performances. Confocal microscopy and radiochemical techniques were used for uptake and permeability studies on an in vitro BBB model made of human brain capillary endothelial cells hCMEC/D3. Results Immunoblotting experiments showed that RI7217-functionalized liposomes bind to transferrin receptor independently of the procedure employed to ligate their surface with the antibody, while SPR experiments showed a slightly higher affinity for covalently functionalized nanoliposomes. The functionalization with RI7217 did not affect the liposomes’ affinity for amyloid-β. The functionalization of liposomes with RI7217, independently of the ligation procedure, gave higher values of uptake and permeability across the barrier model in comparison to the nondecorated ones, without cell monolayer alterations. Of note, the best performing particles were those covalently coupled with the antibody. The ratios of the two radiolabeled lipids (3H-sphingomyelin and 14C-phosphatidic acid) present in the liposome bilayer were found to be similar in the apical and in the basolateral compartments of the barrier model, suggesting that liposomes were transported intact across the cell monolayer. Confocal experiments showed no co-localization of RI7217-liposomes with early/late endosomes or early lysosomes. Conclusion Our results suggest that RI7217 promotes the in vitro barrier crossing of liposomes containing phosphatidic acid, targeting the Alzheimer’s disease amyloid-β peptide. Moreover, for the first time, we prove herein the superior efficiency of covalent coupling of RI7217 versus biotin/streptavidin ligation to facilitate liposomes in overcoming the BBB in vitro.


Molecular and Cellular Neuroscience | 2009

Pin1 affects Tau phosphorylation in response to Aβ oligomers

Alessandra Bulbarelli; Elena Lonati; Emanuela Cazzaniga; Maria Gregori; Massimo Masserini

We show that in hippocampal cultured neurons, dephosphorylation of peptidyl-prolyl cis-trans isomerase Pin1 on Ser16 is occurring during the early stages of exposure to Abeta (1-42) oligomers. This occurrence, resulting in Pin1 activation, is paralleled by Tau(Thr231) dephosphorylation, probably due to Pin1-mediated Tau isomerisation. Indeed, in the presence of the specific Pin1 inhibitor juglone, Abeta-induced Tau(Thr231)dephosphorylation is prevented. The involvement of protein phosphatase 2A (PP2A) in dephosphorylation of isomerised Tau is shown by the co-treatment of neurons with Abeta (1-42) and okadaic acid, a PP2A inhibitor, leading to Tau(Thr231) hyperphosphorylation. We also report the modulation, via Pin1, of Ser199, Ser396, Ser400 and Ser404 phosphorylation state in response to Abeta treatment. Taken together, these data suggest for the first time that an early Pin1 response might be transiently evoked by Abeta 1-42 oligomers, preventing Tau hyperphosphorylation. This evidence highlights the role of Pin1 as Tau phosphorylation modulator during Alzheimer onset.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Nanotechnology for neurodegenerative disorders

Francesca Re; Maria Gregori; Massimo Masserini

The efficacy, cellular uptake and specific transport of drugs and/or imaging agents to target organs, tissues and cells are common issues in the diagnosis and treatment of different disorders. In the case of neurodegenerative diseases, they represent complex problems, since brain targeting remains a still unsolved challenge in pharmacology, due to the presence of the blood-brain barrier, a tightly packed layer of endothelial cells that prevents unwanted substances to enter the brain. Engineered nanomaterials, objects with dimensions of 1-100 nm, are providing interesting biomedical tools potentially able to solve these problems, thanks to their physico-chemical features and to the possibility of multi-functionalization, allowing to confer them different features at the same time, including the ability to cross the blood-brain barrier. This review focuses on the state-of-the-art of nanomaterials suitable for therapy and diagnostic imaging of the most common neurodegenerative disorders, as well as for neuroprotection and neuronal tissue regeneration. Finally, their potential neurotoxicity is discussed, and future nanotechnological approaches are described.


PLOS ONE | 2013

A Novel Retro-Inverso Peptide Inhibitor Reduces Amyloid Deposition, Oxidation and Inflammation and Stimulates Neurogenesis in the APPswe/PS1ΔE9 Mouse Model of Alzheimer’s Disease

Vadivel Parthsarathy; Paula L. McClean; Christian Hölscher; Mark Taylor; Claire Tinker; Glynn Jones; Oleg Kolosov; Elisa Salvati; Maria Gregori; Massimo Masserini; David Allsop

Previously, we have developed a retro-inverso peptide inhibitor (RI-OR2, rGffvlkGr) that blocks the in vitro formation and toxicity of the Aβ oligomers which are thought to be a cause of neurodegeneration and memory loss in Alzheimer’s disease. We have now attached a retro-inverted version of the HIV protein transduction domain ‘TAT’ to RI-OR2 to target this new inhibitor (RI-OR2-TAT, Ac-rGffvlkGrrrrqrrkkrGy-NH2) into the brain. Following its peripheral injection, a fluorescein-labelled version of RI-OR2-TAT was found to cross the blood brain barrier and bind to the amyloid plaques and activated microglial cells present in the cerebral cortex of 17-months-old APPswe/PS1ΔE9 transgenic mice. Daily intraperitoneal injection of RI-OR2-TAT (at 100 nmol/kg) for 21 days into 10-months-old APPswe/PS1ΔE9 mice resulted in a 25% reduction (p<0.01) in the cerebral cortex of Aβ oligomer levels, a 32% reduction (p<0.0001) of β-amyloid plaque count, a 44% reduction (p<0.0001) in the numbers of activated microglial cells, and a 25% reduction (p<0.0001) in oxidative damage, while the number of young neurons in the dentate gyrus was increased by 210% (p<0.0001), all compared to control APPswe/PS1ΔE9 mice injected with vehicle (saline) alone. Our data suggest that oxidative damage, inflammation, and inhibition of neurogenesis are all a downstream consequence of Aβ aggregation, and identify a novel brain-penetrant retro-inverso peptide inhibitor of Aβ oligomer formation for further testing in humans as a potential disease-modifying treatment for Alzheimer’s disease.


Journal of Biotechnology | 2011

Curcumin derivatives as new ligands of Aβ peptides

Cristina Airoldi; Cristiano Zona; Erika Sironi; Laura Colombo; Massimo Messa; Dario Aurilia; Maria Gregori; Massimo Masserini; Mario Salmona; Francesco Nicotra; Barbara La Ferla

Curcumin derivatives with high chemical stability, improved solubility and carrying a functionalized appendage for the linkage to other entities, have been synthesized in a straightforward manner. All compounds retained Curcumin ability to bind Aβ peptide oligomers without inducing their aggregation. Moreover all Curcumin derivatives were able to stain very efficiently Aβ deposits.


Glycobiology | 2010

A membrane-bound trehalase from Chironomus riparius larvae: purification and sensitivity to inhibition

Matilde Forcella; Francesca Cardona; Andrea Goti; Camilla Parmeggiani; Laura Cipolla; Maria Gregori; Raffaella Schirone; Paola Fusi; Paolo Parenti

A preparation of a membrane-bound trehalase from the larvae of the midge Chironomus riparius (Diptera: Chironomidae) was obtained by detergent solubilization, ion-exchange chromatography and concanavalin A affinity chromatography. Trehalase was purified 1080-fold to a specific activity of 75 U mg(-)(1). The initial rate of trehalase activity followed Henri-Michaelis-Menten kinetics with a K(m) of 0.48 +/- 0.04 mM. Catalytic efficiency was maximal at pH 6.5. The activity was highly inhibited by mono- and bicyclic iminosugar alkaloids such as (in order of potency) casuarine (IC(50) = 0.25 +/- 0.03 microM), deoxynojirimycin (IC(50) = 2.83 +/- 0.34 microM) and castanospermine (IC(50) = 12.7 +/- 1.4 microM). Increasing substrate concentration reduced the inhibition. However, in the presence of deoxynojirimycin, Lineweaver-Burk plots were curvilinear upward. Linear plots were obtained with porcine trehalase. Here, we propose that deoxynojirimycin inhibits the activity of trehalase from C. riparius according to a ligand exclusion model. Inhibition was further characterized by measuring enzyme activity in the presence of a series of casuarine and deoxynojirimycin derivatives. For comparison, inhibition studies were also performed with porcine trehalase. Results indicate substantial differences between midge trehalase and mammalian trehalase suggesting that, in principle, inhibitors against insect pests having trehalase as biochemical targets can be developed.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Nanomedicine for the treatment of Alzheimer's disease

Maria Gregori; Massimo Masserini; Simona Mancini

Alzheimers disease affects more than 35 million people worldwide and this number is presumed to double by the year 2050. Currently, there is no efficient therapy for this disorder but a promising approach is represented by nanotechnology, easily multifunctionalizable devices with size in the order of billionth of meter. This review provides a concise survey on the nano-based strategies for Alzheimers disease treatment, aiming at carrying drugs across the blood-brain barrier, in particular to target the metabolism of β-amyloid peptide, a pivotal player in this pathology.

Collaboration


Dive into the Maria Gregori's collaboration.

Top Co-Authors

Avatar

Massimo Masserini

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Francesca Re

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Elisa Salvati

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Emanuela Cazzaniga

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Cipolla

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Silvia Sesana

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Antonina Orlando

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Carlo Ferrarese

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge