Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Massimo Masserini is active.

Publication


Featured researches published by Massimo Masserini.


Frontiers in Cellular Neuroscience | 2014

Pin1, a new player in the fate of HIF-1α degradation: an hypothetical mechanism inside vascular damage as Alzheimer’s disease risk factor

Elena Lonati; Anna Brambilla; Chiara Milani; Massimo Masserini; Paola Palestini; Alessandra Bulbarelli

Aetiology of neurodegenerative mechanisms underlying Alzheimer’s disease (AD) are still under elucidation. The contribution of cerebrovascular deficiencies (such as cerebral ischemia/stroke) has been strongly endorsed in recent years. Reduction of blood supply leading to hypoxic condition is known to activate cellular responses mainly controlled by hypoxia-inducible transcription factor-1 (HIF-1). Thus alterations of oxygen responsive HIF-1α subunit in the central nervous system may contribute to the cognitive decline, especially influencing mechanisms associated to amyloid precursor protein (APP) amyloidogenic metabolism. Although HIF-1α protein level is known to be regulated by von Hippel-Lindau (VHL) ubiquitin-proteasome system, it has been recently suggested that glycogen synthase kinase-3β (Gsk-3β) promotes a VHL-independent HIF-1α degradation. Here we provide evidences that in rat primary hippocampal cell cultures, HIF-1α degradation might be mediated by a synergic action of Gsk-3β and peptidyl-prolyl cis/trans isomerase (Pin1). In post-ischemic conditions, such as those mimicked with oxygen glucose deprivation (OGD), HIF-1α protein level increases remaining unexpectedly high for long time after normal condition restoration jointly with the increase of lactate dehydrogenase (LDH) and β-secretase 1 (BACE1) protein expression (70 and 140% respectively). Interestingly the Pin1 activity decreases about 40–60% and Pin1S16 inhibitory phosphorylation significantly increases, indicating that Pin1 binding to its substrate and enzymatic activity are reduced by treatment. Co-immunoprecipitation experiments demonstrate that HIF-1α/Pin1 in normoxia are associated, and that in presence of specific Pin1 and Gsk-3β inhibitors their interaction is reduced in parallel to an increase of HIF-1α protein level. Thus we suggest that in post-OGD neurons the high level of HIF-1α might be due to Pin1 binding ability and activity reduction which affects HIF-1α degradation: an event that may highlight the relevance of ischemia/HIF-1α as a risk factor in AD pathogenesis.


FEBS Letters | 1995

A photo-reactive derivative of ganglioside GM1 specifically cross-links VIP21-caveolin on the cell surface

Anna M. Fra; Massimo Masserini; Paola Palestini; Sandro Sonnino; Kai Simons

Previous studies have shown that sphingolipids may be enriched in caveolae, plasmalemmal invaginations implicated in endocytosis and signal transduction. We synthesised a radiolabeled derivative of ganglioside GM1 bearing a photo‐reactive cross‐linker at the end of its acyl chain. After insertion in the plasma membrane of cultured A431 or MDCK cells and photoactivation, the main protein cross‐linked by the GM1 derivative was VIP21‐caveolin, an essential structural component of caveolae. This result shows close proximity between GM1 molecules and VIP21‐caveolin in the caveolar membrane and strongly implicates sphingolipid segregation in the biogenesis of caveolae.


Biomaterials | 2010

Lipid-based Nanoparticles with high binding affinity for amyloid-β1-42 peptide

Marco Gobbi; Francesca Re; Mara Canovi; Marten Beeg; Maria Gregori; Silvia Sesana; Sandro Sonnino; Doriano Brogioli; Claudia Musicanti; Paolo Gasco; Mario Salmona; Massimo Masserini

The neurotoxic beta-amyloid peptide (Abeta), formed in anomalous amounts in Alzheimers disease (AD), is released as monomer and then undergoes aggregation forming oligomers, fibrils and plaques in diseased brains. Abeta aggregates are considered as possible targets for therapy and/or diagnosis of AD. Since nanoparticles (NPs) are promising vehicles for imaging probes and therapeutic agents, we realized and characterized two types of NPs (liposomes and solid lipid nanoparticles, 145 and 76 nm average size, respectively) functionalized to target Abeta(1-42) with high affinity. Preliminary immunostaining studies identified anionic phospholipids [phosphatidic acid (PA) and cardiolipin (CL)] as suitable Abeta(1-42) ligands. PA/CL-functionalized, but not plain, NPs interacted with Abeta(1-42) aggregates as indicated by ultracentrifugation experiments, in which binding reaction occurred in solution, and by Surface Plasmon Resonance (SPR) experiments, in which NPs flowed onto immobilized Abeta(1-42). All these experiments were carried out in buffered saline. SPR studies indicated that, when exposed on NPs surface, PA/CL display very high affinity for Abeta(1-42) fibrils (22-60 nm), likely because of the occurrence of multivalent interactions which markedly decrease the dissociation of PA/CL NPs from Abeta. Noteworthy, PA/CL NPs did not bind to bovine serum albumin. The PA/CL NPs described in this work are endowed with the highest affinity for Abeta so far reported. These characteristics make our NPs a very promising vector for the targeted delivery of potential new diagnostic and therapeutic molecules to be tested in appropriate animal models.


Journal of Neurochemistry | 2002

Glycolipid-Enriched Caveolae and Caveolae-Like Domains in the Nervous System

Massimo Masserini; Paola Palestini; Marina Pitto

Abstract: Recent years have been characterized by a booming interest in research on caveolae and caveolae‐like membrane domains. The interest in this subject grew further, when their involvement in fundamental membrane‐associated events, such as signal transmission and lipid/protein sorting, was postulated. Substantial progress has been reached in understanding the biological role of membrane domains in eukaryotic cells. The neuron, however, which perhaps represents one of the greatest challenges to research on membrane traffic and function, has only been partially investigated. The purpose of the present review is to survey this issue in the nervous system. We confine ourselves to the presence of membrane domains in the nervous system and discuss this in the context of three facts: first, glycolipids are peculiarly enriched in both caveolae and caveolae‐like domains and are particularly abundant in the nervous system; second, the neuron is characterized by a basic dual polarity, similar in this respect to other polarized cells, where the role of glycolipid‐enriched domains for lipid/protein sorting has been better ascertained; and third, neurons evolved from, and are related to, simpler eukaryotic cells, allowing us to find analogies with more investigated nonneuronal cells.


Biochimica et Biophysica Acta | 1981

Electron paramagnetic resonance studies on the fluidity and surface dynamics of egg phosphatidylcholine vesicles containing gangliosides

Enrico Bertoli; Massimo Masserini; Sandro Sonnino; Riccardo Ghidoni; Benvenuto Cestaro; Guido Tettamanti

The influence of different gangliosides (GM1, GD1a, GT1b) on the fluidity and surface dynamics of phosphatidylcholine small unilamellar vesicles was studied by electron paramagnetic resonance. 5- and 16-nitroxystearic acid, sounding respectively the region close to the surface and that close to the hydrophobic core of the vesicle, were employed as spin-label probes. The signals released by 5-nitroxystearic acid showed that the presence of gangliosides reduced the mobility of the hydrocarbon chains around the probe. The effect increased by increasing ganglioside concentration, and diminished from GM1 to GD1a and GT1b. The decrease of membrane fluidity was also monitored by the 16-nitroxystearic acid probe. On addition of Ca2+ the fluidity of ganglioside-containing vesicles (as signalled by the 5-nitroxystearic acid probe) promptly decreased, therefore returning slowly to the original value. It is suggested that gangliosides cause strong side-side head group interactions on the bilayer surface--between ganglioside oligosaccharide chains and between ganglioside and phosphatidylcholine polar portions--which lead the lipid chains to assembly in a more rigid fashion. The influence of Ca2+ is interpreted as due to lateral phase separation in the vesicle membrane. This phenomenon can be related to the formation or stabilization of ganglioside clusters on the vesicle surface.


Analytical Biochemistry | 1983

Recognition by two-dimensional thin-layer chromatography and densitometric quantification of alkali-labile gangliosides from the brain of different animals.

Sandro Sonnino; Riccardo Ghidoni; Vanna Chigorno; Massimo Masserini; Guido Tettamanti

A simple method for recognition and quantification of alkali-labile gangliosides is described. The method was worked out using authentic alkali-labile gangliosides in pure form (9-O-Ac-GT1b; 9-O-Ac-GQ 1b; lactone form of GD 1b) and applied to ganglioside mixtures from the brain of mouse, rat, rabbit, pig, and pigeon. The method consists of two-dimensional thin-layer chromatography on silica gel high-performance thin-layer chromatography plates employing the same solvent, chloroform/methanol/0.2% aqueous CaCl2, 50/40/10, for both runs. Prior to the second run the plate is exposed at room temperature for 5 h to ammonia vapors in order to split alkali-labile linkages. At the end of chromatography alkali-stable gangliosides appear lined along a diagonal starting from the origin; the spots corresponding to alkali-labile gangliosides lie out of the diagonal and can be individually detected and quantified on the basis of their sialic acid content. Up to 15 different spots, corresponding to as many alkali-labile gangliosides, can be recognized by this procedure.


ACS Nano | 2012

Versatile and Efficient Targeting Using a Single Nanoparticulate Platform: Application to Cancer and Alzheimer's Disease

Benjamin Le Droumaguet; Julien Nicolas; Davide Brambilla; Simona Mura; Andrei Maksimenko; Line De Kimpe; Elisa Salvati; Cristiano Zona; Cristina Airoldi; Mara Canovi; Marco Gobbi; Magali Noiray; Barbara La Ferla; Francesco Nicotra; Wiep Scheper; Orfeu Flores; Massimo Masserini; Karine Andrieux; Patrick Couvreur

A versatile and efficient functionalization strategy for polymeric nanoparticles (NPs) has been reported and successfully applied to PEGylated, biodegradable poly(alkyl cyanoacrylate) (PACA) nanocarriers. The relevance of this platform was demonstrated in both the fields of cancer and Alzheimers disease (AD). Prepared by copper-catalyzed azide-alkyne cycloaddition (CuAAC) and subsequent self-assembly in aqueous solution of amphiphilic copolymers, the resulting functionalized polymeric NPs exhibited requisite characteristics for drug delivery purposes: (i) a biodegradable core made of poly(alkyl cyanoacrylate), (ii) a hydrophilic poly(ethylene glycol) (PEG) outer shell leading to colloidal stabilization, (iii) fluorescent properties provided by the covalent linkage of a rhodamine B-based dye to the polymer backbone, and (iv) surface functionalization with biologically active ligands that enabled specific targeting. The construction method is very versatile and was illustrated by the coupling of a small library of ligands (e.g., biotin, curcumin derivatives, and antibody), resulting in high affinity toward (i) murine lung carcinoma (M109) and human breast cancer (MCF7) cell lines, even in a coculture environment with healthy cells and (ii) the β-amyloid peptide 1-42 (Aβ(1-42)), believed to be the most representative and toxic species in AD, both under its monomeric and fibrillar forms. In the case of AD, the ligand-functionalized NPs exhibited higher affinity toward Aβ(1-42) species comparatively to other kinds of colloidal systems and led to significant aggregation inhibition and toxicity rescue of Aβ(1-42) at low molar ratios.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model

Francesca Re; Ilaria Cambianica; Cristiano Zona; Silvia Sesana; Maria Gregori; Roberta Rigolio; Barbara La Ferla; Francesco Nicotra; Gianluigi Forloni; Alfredo Cagnotto; Mario Salmona; Massimo Masserini; Giulio Sancini

A promising strategy to enhance blood-brain barrier penetration by drugs is the functionalization of nanocarriers with uptake-facilitating ligands. We studied the cellular uptake, by cultured RBE4 brain capillary endothelial cells, of nanoliposomes (NLs) covalently coupled with monomer or tandem dimer of apolipoprotein E (ApoE)-derived peptides (residues 141-150), at various densities. NLs without functionalization did not show either relevant membrane accumulation or cellular uptake, as monitored by confocal microscopy and quantified by fluorescence-activated cell sorting. Functionalization with peptides mediated an efficient NLs uptake that increased with peptide density; NLs carrying monomeric peptide performed the best. Moreover, we studied the ability of ApoE-NLs to enhance the transport of a drug payload through a RBE4 cell monolayer. The permeability of a tritiated curcumin derivative was enhanced after its entrapment into ApoE-NLs, in particular those functionalized with the dimer (+83% with respect to free drug, P < 0.01). Thus, these NLs appear particularly suitable for implementing further strategies for drug brain targeting.


Current Medicinal Chemistry | 2010

Beta Amyloid Aggregation Inhibitors: Small Molecules as Candidate Drugs for Therapy of Alzheimers Disease

Francesca Re; Cristina Airoldi; Cristiano Zona; Massimo Masserini; B. La Ferla; N. Quattrocchi; F Nicotra

The progressive production and subsequent accumulation of β-amyloid (Aβ), a proteolytic fragment of the membrane-associated amyloid precursor protein (APP), plays a central role in Alzheimers Disease (AD). Aβ is released in a soluble form that may be responsible for cognitive dysfunction in the early stages of the disease, then progressively forms oligomeric, multimeric and fibrillar aggregates, triggering neurodegeneration. Eventually, the aggregation and accumulation of Aβ culminates with the formation of extracellular plaques, one of the morphological hallmarks of the disease, detectable post-mortem in AD brains. In this review we report the known structural features of amyloid peptides and fibrils, and we give an overview of all small molecules that have been found to interact with Aβ aggregation. Deeper knowledge of the mechanism leading to amyloid fibrils along with their molecular structure and the molecular interactions responsible for activity of small molecules could supply useful information for the design of new AD therapeutic agents.


Biochimica et Biophysica Acta | 2001

Role of sphingolipids in the biogenesis of membrane domains

Massimo Masserini; Daniela Ravasi

In recent years, a huge interest in sphingolipid- and cholesterol-enriched membrane domains has risen, after their involvement in fundamental membrane-associated events such as signal transmission, cell adhesion and lipid/protein sorting was postulated. Theoretical considerations and several experimental data suggest that sphingolipids play an important role in the biogenesis and function of domains. In fact, their physicochemical features, different from those of other membrane lipids, allow their interaction either with other sphingolipids or with other membrane components and external ligands. Owing to these features, sphingolipids may undergo segregation and represent a nucleation point for co-clustering with other lipids and proteins in a complex, functional domain. Moreover, sphingolipids confer dynamic properties on domains, a fundamental feature for the modulation of their postulated functions.

Collaboration


Dive into the Massimo Masserini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Palestini

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Gregori

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Marina Pitto

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emanuela Cazzaniga

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Silvia Sesana

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge