Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María J. Yebra is active.

Publication


Featured researches published by María J. Yebra.


Journal of Bacteriology | 2010

Complete Genome Sequence of the Probiotic Lactobacillus casei Strain BL23

Alain Mazé; Grégory Boël; Manuel Zúñiga; Alexa Bourand; Valentin Loux; María J. Yebra; Vicente Monedero; Karine Correia; Noémie Jacques; Sophie Beaufils; Sandrine Poncet; Philippe Joyet; Eliane Milohanic; Serge Casaregola; Yanick Auffray; Gaspar Pérez-Martínez; Jean-François Gibrat; Monique Zagorec; Christof Francke; Axel Hartke; Josef Deutscher

The entire genome of Lactobacillus casei BL23, a strain with probiotic properties, has been sequenced. The genomes of BL23 and the industrially used probiotic strain Shirota YIT 9029 (Yakult) seem to be very similar.


Gut microbes | 2014

Commensal-pathogen interactions in the intestinal tract

Lisa A. Reynolds; Katherine A. Smith; Kara J. Filbey; Yvonne Harcus; James P. Hewitson; Stephen A. Redpath; Yanet Valdez; María J. Yebra; B. Brett Finlay; Rick M. Maizels

The intestinal microbiota are pivotal in determining the developmental, metabolic and immunological status of the mammalian host. However, the intestinal tract may also accommodate pathogenic organisms, including helminth parasites which are highly prevalent in most tropical countries. Both microbes and helminths must evade or manipulate the host immune system to reside in the intestinal environment, yet whether they influence each other’s persistence in the host remains unknown. We now show that abundance of Lactobacillus bacteria correlates positively with infection with the mouse intestinal nematode parasite, Heligmosomoides polygyrus, as well as with heightened regulatory T cell (Treg) and Th17 responses. Moreover, H. polygyrus raises Lactobacillus species abundance in the duodenum of C57BL/6 mice, which are highly susceptible to H. polygyrus infection, but not in BALB/c mice, which are relatively resistant. Sequencing of samples at the bacterial gyrB locus identified the principal Lactobacillus species as L. taiwanensis, a previously characterized rodent commensal. Experimental administration of L. taiwanensis to BALB/c mice elevates regulatory T cell frequencies and results in greater helminth establishment, demonstrating a causal relationship in which commensal bacteria promote infection with an intestinal parasite and implicating a bacterially-induced expansion of Tregs as a mechanism of greater helminth susceptibility. The discovery of this tripartite interaction between host, bacteria and parasite has important implications for both antibiotic and anthelmintic use in endemic human populations.


Applied and Environmental Microbiology | 2007

Identification of a Gene Cluster Enabling Lactobacillus casei BL23 To Utilize myo-Inositol

María J. Yebra; Manuel Zúñiga; Sophie Beaufils; Gaspar Pérez-Martínez; Josef Deutscher; Vicente Monedero

ABSTRACT Genome analysis of Lactobacillus casei BL23 revealed that, compared to L. casei ATCC 334, it carries a 12.8-kb DNA insertion containing genes involved in the catabolism of the cyclic polyol myo-inositol (MI). Indeed, L. casei ATCC 334 does not ferment MI, whereas strain BL23 is able to utilize this carbon source. The inserted DNA consists of an iolR gene encoding a DeoR family transcriptional repressor and a divergently transcribed iolTABCDG1G2EJK operon, encoding a complete MI catabolic pathway, in which the iolK gene probably codes for a malonate semialdehyde decarboxylase. The presence of iolK suggests that L. casei has two alternative pathways for the metabolism of malonic semialdehyde: (i) the classical MI catabolic pathway in which IolA (malonate semialdehyde dehydrogenase) catalyzes the formation of acetyl-coenzyme A from malonic semialdehyde and (ii) the conversion of malonic semialdehyde to acetaldehyde catalyzed by the product of iolK. The function of the iol genes was verified by the disruption of iolA, iolT, and iolD, which provided MI-negative strains. By contrast, the disruption of iolK resulted in a strain with no obvious defect in MI utilization. Transcriptional analyses conducted with different mutant strains showed that the iolTABCDG1G2EJK cluster is regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor IolR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This is the first example of an operon for MI utilization in lactic acid bacteria and illustrates the versatility of carbohydrate utilization in L. casei BL23.


Journal of Bacteriology | 2000

Genetics of L-sorbose transport and metabolism in Lactobacillus casei.

María J. Yebra; Ana Veyrat; Mário A. Santos; Gaspar Pérez-Martínez

Genes encoding L-sorbose metabolism of Lactobacillus casei ATCC 393 have been identified on a 6.8-kb chromosomal DNA fragment. Sequence analysis revealed seven complete genes and a partial open reading frame transcribed as two units. The deduced amino acid sequences of the first transcriptional unit (sorRE) showed high similarity to the transcriptional regulator and the L-sorbose-1-phosphate reductase of the sorbose (sor) operon from Klebsiella pneumoniae. The other genes are transcribed as one unit (sorFABCDG) in opposite direction to sorRE. The deduced peptide sequence of sorF showed homology with the D-sorbitol-6-phosphate dehydrogenase encoded in the sor operon from K. pneumoniae and sorABCD to components of the mannose phosphotransferase system (PTS) family but especially to domains EIIA, EIIB, EIIC and EIID of the phosphoenolpyruvate-dependent L-sorbose PTS from K. pneumoniae. Finally, the deduced amino acid sequence of a truncated gene (sorG) located downstream of sorD presented high similarity with ketose-1,6-bisphosphate aldolases. Results of studies on enzyme activities and transcriptional analysis revealed that the two gene clusters, sorRE and sorFABCDG, are induced by L-sorbose and subject to catabolite repression by D-glucose. Data indicating that the catabolite repression is mediated by components of the PTS elements and by CcpA, are presented. Results of sugar uptake assays in L. casei wild-type and sorBC mutant strains indicated that L-sorbose is taken up by L-sorbose-specific enzyme II and that L. casei contains an inducible D-fructose-specific PTS. Results of growth analysis of those strains and a man sorBC double mutant suggested that L-sorbose is probably also transported by the D-mannose PTS. We also present evidence, from studies on a sorR mutant, suggesting that the sorR gene encodes a positive regulator of the two sor operons. Sequence alignment of SorR, SorC (K. pneumoniae), and DeoR (Bacillus subtilis) revealed that they might constitute a new group of transcriptional regulators.


Applied Microbiology and Biotechnology | 2010

Perspectives of engineering lactic acid bacteria for biotechnological polyol production

Vicente Monedero; Gaspar Pérez-Martínez; María J. Yebra

Polyols are sugar alcohols largely used as sweeteners and they are claimed to have several health-promoting effects (low-caloric, low-glycemic, low-insulinemic, anticariogenic, and prebiotic). While at present chemical synthesis is the only strategy able to assure the polyol market demand, the biotechnological production of polyols has been implemented in yeasts, fungi, and bacteria. Lactic acid bacteria (LAB) are a group of microorganisms particularly suited for polyol production as they display a fermentative metabolism associated with an important redox modulation and a limited biosynthetic capacity. In addition, LAB participate in food fermentation processes, where in situ production of polyols during fermentation may be useful in the development of novel functional foods. Here, we review the polyol production by LAB, focusing on metabolic engineering strategies aimed to redirect sugar fermentation pathways towards the synthesis of biotechnologically important sugar alcohols such as sorbitol, mannitol, and xylitol. Furthermore, possible approaches are presented for engineering new fermentation routes in LAB for production of arabitol, ribitol, and erythritol.


Applied and Environmental Microbiology | 2011

Utilization of Natural Fucosylated Oligosaccharides by Three Novel α-l-Fucosidases from a Probiotic Lactobacillus casei Strain

Jesús Rodríguez-Díaz; Vicente Monedero; María J. Yebra

ABSTRACT Three putative α-l-fucosidases encoded in the Lactobacillus casei BL23 genome were cloned and purified. The proteins displayed different abilities to hydrolyze natural fucosyloligosaccharides like 2′-fucosyllactose, H antigen disaccharide, H antigen type II trisaccharide, and 3′-, 4′-, and 6′-fucosyl-GlcNAc. This indicated a possible role in the utilization of oligosaccharides present in human milk and intestinal mucosa.


Applied Microbiology and Biotechnology | 2010

Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase

Reinout De Boeck; Luz Adriana Sarmiento-Rubiano; Inmaculada Nadal; Vicente Monedero; Gaspar Pérez-Martínez; María J. Yebra

Sorbitol is a sugar alcohol largely used in the food industry as a low-calorie sweetener. We have previously described a sorbitol-producing Lactobacillus casei (strain BL232) in which the gutF gene, encoding a sorbitol-6-phosphate dehydrogenase, was expressed from the lactose operon. Here, a complete deletion of the ldh1 gene, encoding the main l-lactate dehydrogenase, was performed in strain BL232. In a resting cell system with glucose, the new strain, named BL251, accumulated sorbitol in the medium that was rapidly metabolized after glucose exhaustion. Reutilization of produced sorbitol was prevented by deleting the gutB gene of the phosphoenolpyruvate: sorbitol phosphotransferase system (PTSGut) in BL251. These results showed that the PTSGut did not mediate sorbitol excretion from the cells, but it was responsible for uptake and reutilization of the synthesized sorbitol. A further improvement in sorbitol production was achieved by inactivation of the mtlD gene, encoding a mannitol-1-phosphate dehydrogenase. The new strain BL300 (lac::gutF Δldh1 ΔgutB mtlD) showed an increase in sorbitol production whereas no mannitol synthesis was detected, avoiding thus a polyol mixture. This strain was able to convert lactose, the main sugar from milk, into sorbitol, either using a resting cell system or in growing cells under pH control. A conversion rate of 9.4% of lactose into sorbitol was obtained using an optimized fed-batch system and whey permeate, a waste product of the dairy industry, as substrate.


Microbiology | 2002

Cross-talk between the L-sorbose and D-sorbitol (D-glucitol) metabolic pathways in Lactobacillus casei.

María J. Yebra; Gaspar Pérez-Martínez

A gene encoding sorbitol-6-phosphate dehydrogenase (SorF) belonging to the sorbose operon (sorFABCDG) has been characterized in Lactobacillus casei. Inactivation of this gene revealed the presence of another sorbitol-6-phosphate dehydrogenase that was induced by D-sorbitol (D-glucitol). The gene encoding this activity (gutF) has also been isolated, sequenced and disrupted. The sorbitol-6-phosphate dehydrogenase genes (sorF, gutF) were required for growth on L-sorbose and D-sorbitol, respectively. Biochemical and transcriptional analyses of the wild-type and mutant strains demonstrated that L-sorbose and D-sorbitol induced sorF and the gene encoding the sorbose operon activator (sorR), while the expression of gutF was only activated by D-sorbitol. Furthermore, these studies indirectly suggested that a common metabolite of the L-sorbose and D-sorbitol metabolic pathways (probably D-sorbitol 6-phosphate) would act as the effector of SorR. The same effector would also be the inducer of gutF, although the two pathways seem to be subject to distinct regulatory mechanisms.


PLOS ONE | 2014

Noroviral P-Particles as an In Vitro Model to Assess the Interactions of Noroviruses with Probiotics

Antonio Rubio-del-Campo; José M. Coll-Marqués; María J. Yebra; Javier Buesa; Gaspar Pérez-Martínez; Vicente Monedero; Jesús Rodríguez-Díaz

Noroviruses (NoVs) are the main etiologic agents of acute epidemic gastroenteritis and probiotic bacteria have been reported to exert a positive effect on viral diarrhea. The protruding (P) domain from NoVs VP1 capsid protein has the ability to assemble into the so-called P-particles, which retain the binding ability to host receptors. We purified the P-domains from NoVs genotypes GI.1 and GII.4 as 6X(His)-tagged proteins and determined that, similar to native domains, they were structured into P-particles that were functional in the recognition of the specific glycoconjugated receptors, as established by surface plasmon resonance experiments. We showed that several lactic acid bacteria (probiotic and non-probiotic) and a Gram-negative probiotic strain have the ability to bind P-particles on their surfaces irrespective of their probiotic status. The binding of P-particles (GI.1) to HT-29 cells in the presence of selected strains showed that bacteria can inhibit P-particle attachment in competitive exclusion experiments. However, pre-treatment of cells with bacteria or adding bacteria to cells with already attached P-particles enhanced the retention of the particles. Although direct viral binding and blocking of viral receptors have been postulated as mechanisms of protection against viral infection by probiotic bacteria, these results highlight the need for a careful evaluation of this hypothesis. The work presented here investigates for the first time the probiotic-NoVs-host interactions and points up the NoVs P-particles as useful tools to overcome the absence of in vitro cellular models to propagate these viruses.


Applied and Environmental Microbiology | 2012

Lactobacillus casei Ferments the N-Acetylglucosamine Moiety of Fucosyl-α-1,3-N-Acetylglucosamine and Excretes l-Fucose

Jesús Rodríguez-Díaz; Antonio Rubio-del-Campo; María J. Yebra

ABSTRACT We have previously characterized from Lactobacillus casei BL23 three α-l-fucosidases, AlfA, AlfB, and AlfC, which hydrolyze in vitro natural fucosyl-oligosaccharides. In this work, we have shown that L. casei is able to grow in the presence of fucosyl-α-1,3-N-acetylglucosamine (Fuc-α-1,3-GlcNAc) as a carbon source. Interestingly, L. casei excretes the l-fucose moiety during growth on Fuc-α-1,3-GlcNAc, indicating that only the N-acetylglucosamine moiety is being metabolized. Analysis of the genomic sequence of L. casei BL23 shows that downstream from alfB, which encodes the α-l-fucosidase AlfB, a gene, alfR, that encodes a transcriptional regulator is present. Divergently from alfB, three genes, alfEFG, that encode proteins with homology to the enzyme IIAB (EIIAB), EIIC, and EIID components of a mannose-class phosphoenolpyruvate:sugar phosphotransferase system (PTS) are present. Inactivation of either alfB or alfF abolishes the growth of L. casei on Fuc-α-1,3-GlcNAc. This proves that AlfB is involved in Fuc-α-1,3-GlcNAc metabolism and that the transporter encoded by alfEFG participates in the uptake of this disaccharide. A mutation in the PTS general component enzyme I does not eliminate the utilization of Fuc-α-1,3-GlcNAc, suggesting that the transport via the PTS encoded by alfEFG is not coupled to phosphorylation of the disaccharide. Transcriptional analysis with alfR and ccpA mutants shows that the two gene clusters alfBR and alfEFG are regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor AlfR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This work reports for the first time the characterization of the physiological role of an α-l-fucosidase in lactic acid bacteria and the utilization of Fuc-α-1,3-GlcNAc as a carbon source for bacteria.

Collaboration


Dive into the María J. Yebra's collaboration.

Top Co-Authors

Avatar

Vicente Monedero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Gaspar Pérez-Martínez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Zúñiga

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Gonzalo N. Bidart

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Josef Deutscher

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Antonio Rubio-del-Campo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Monika Haros

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jimmy E. Becerra

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge