Maria-Jesus Blanco
Eli Lilly and Company
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria-Jesus Blanco.
Bioorganic & Medicinal Chemistry Letters | 2012
Prashant V. Desai; Thomas J. Raub; Maria-Jesus Blanco
The requirement to cross a biological membrane can be a complex process especially if multidrug transporters such as P-gp must be considered. Drug partitioning into the lipid membrane and efflux by P-gp are tightly coupled processes wherein H-bonding interactions play a key role. All H-bond donors and acceptors are not equal in terms of the strength of the H-bonds that they form, hence it is important to consider their relative strength. Using various examples from literature, we illustrate the benefits of considering the relative strengths of individual H-bonds and introducing intramolecular H-bonds to increase membrane permeability and/or decrease P-gp efflux.
Bioorganic & Medicinal Chemistry Letters | 2015
Timothy B. Durham; Maria-Jesus Blanco
The pharmaceutical industry is currently facing multiple challenges, in particular the low number of new drug approvals in spite of the high level of R&D investment. In order to improve target selection and assess properly the clinical hypothesis, it is important to start building an integrated drug discovery approach during Lead Generation. This should include special emphasis on evaluating target engagement in the target tissue and linking preclinical to clinical readouts. In this review, we would like to illustrate several strategies and technologies for assessing target engagement and the value of its application to medicinal chemistry efforts.
Expert Opinion on Therapeutic Targets | 2009
Lisa M. Broad; Adrian J. Mogg; Ruth E. Beattie; Ann-Marie Ogden; Maria-Jesus Blanco; David Bleakman
Background: The transient receptor potential (TRP) superfamily of ion channels are a large and diverse group that have received increased attention in recent years. The sub-family of thermo-TRPs which are regulated by temperature, among other physical and chemical stimuli, are of particular interest for the development of potential pain therapeutics. Objective/methods: We review the advances in the field in recent years, focusing on a rationale for pain therapy and potential challenges associated with these targets. Results/conclusions: Vanilloid-type TRP 1 (TRPV1) is the most well studied and advanced member of the family, with selective agonists and antagonists already in clinical use or development, respectively. Among other thermo-TRPs (including TRPV2 – 4, Ankyrin type TRP 1 (TRPA1) and melastatin type TRP 8 (TRPM8)), TRPA1 and TRPM8 are emerging as promising novel pain targets.
Current Topics in Medicinal Chemistry | 2008
Lisa M. Broad; Stacy J. Keding; Maria-Jesus Blanco
As last year marked the tenth anniversary of the cloning of TRPV1, no attenuation has been observed in the intense interest surrounding this ion channel by both academic labs and pharmaceutical companies alike. Patent searches provide an extensive list of novel TRPV1 antagonists generated within the last 7 years, while literature searches reveal a diverse collection of TRPV1 antagonists that have progressed into pre-clinical in vivo profiling and even clinical development. This review serves to summarize the current knowledge of TRPV1 and TRPV1 antagonists as pain therapeutics and to highlight how use of divergent TRPV1 antagonists is helping to further define the physiological and pathological role of TRPV1 and the scope for TRPV1 antagonist therapies.
Current Opinion in Chemical Biology | 2017
Matthew R. Naylor; Andrew T. Bockus; Maria-Jesus Blanco; R. Scott Lokey
As interest in protein-protein interactions and other previously-undruggable targets increases, medicinal chemists are returning to natural products for design inspiration toward molecules that transcend the paradigm of small molecule drugs. These compounds, especially peptides, often have poor ADME properties and thus require a more nuanced understanding of structure-property relationships to achieve desirable oral bioavailability. Although there have been few clinical successes in this chemical space to date, recent work has identified opportunities to introduce favorable physicochemical properties to peptidic macrocycles that maintain activity and oral bioavailability.
Bioorganic & Medicinal Chemistry Letters | 2016
Maria-Jesus Blanco; Tatiana Vetman; Srinivasan Chandrasekhar; Matthew Joseph Fisher; Anita Harvey; Steven L. Kuklish; Mark Chambers; C. Lin; Daniel R. Mudra; J.L. Oskins; Xushan Wang; Xiao-Peng Yu; Alan M. Warshawsky
Continued SAR optimization of a series of 3-methylpyridine-2-carbonyl amino-2,4-dimethyl-benzoic acid led to the selection of compound 4f for clinical studies. Compound 4f showed an IC50 of 123nM for inhibition of PGE2-induced TNFα reduction in an ex vivo LPS-stimulated human whole blood assay (showing >10-fold increase over clinical compound CJ-023,423). Pharmacokinetic profile, selectivity and in vivo efficacy comparing 4f to NSAID diclofenac in the monoiodoacetic acid (MIA) pain model and adjuvant induced arthritis (AIA) inflammatory model are included.
Bioorganic & Medicinal Chemistry Letters | 2016
Maria-Jesus Blanco; Tatiana Vetman; Srinivasan Chandrasekhar; Matthew Joseph Fisher; Anita Harvey; Mark Chambers; C. Lin; Daniel R. Mudra; J.L. Oskins; Xushan Wang; Xiao-Peng Yu; Alan M. Warshawsky
Two new series of EP4 antagonists containing a 3-methylaryl-2-carbonyl core have been identified. One series has a 3-substituted-phenyl core, while the other one incorporates a 3-substituted pyridine. Both series led to compounds with potent activity in functional and human whole blood (hWB) assays. In the pyridine series, compound 7a was found to be a highly potent and selective EP4 antagonist, with suitable rat and dog pharmacokinetic profiles.
Bioorganic & Medicinal Chemistry Letters | 2016
Maria-Jesus Blanco; Tatiana Vetman; Srinivasan Chandrasekhar; Matthew Joseph Fisher; Anita Harvey; Daniel R. Mudra; Xushan Wang; Xiao-Peng Yu; Matthew A. Schiffler; Alan M. Warshawsky
A novel series of EP4 antagonists, based on a quinoline scaffold, has been discovered. Medicinal chemistry efforts to optimize the potency of the initial hit are described. A highly potent compound in a clinically relevant human whole blood assay was identified. Selectivity and pharmacokinetic profiles of this compound are discussed.
Bioorganic & Medicinal Chemistry Letters | 2016
Bruce A. Dressman; Eric George Tromiczak; Mark Donald Chappell; Allie Edward Tripp; Steven J. Quimby; Tatiana Vetman; Adam M. Fivush; James Edward Junior Matt; Carlos Jaramillo; Renhua Li; Albert Khilevich; Maria-Jesus Blanco; Stephon C. Smith; Mercedes Carpintero; José Eugenio de Diego; Mario Barberis; Susana García-Cerrada; José F. Soriano; Jeffrey M. Schkeryantz; Jeffrey M. Witkin; Keith A. Wafford; Wesley Seidel; Thomas C. Britton; Carl D. Overshiner; Xia Li; Xushan Wang; Beverly A. Heinz; John T. Catlow; Steven Swanson; David W. Bedwell
Negative modulators of metabotropic glutamate 2 & 3 receptors demonstrate antidepressant-like activity in animal models and hold promise as novel therapeutic agents for the treatment of major depressive disorder. Herein we describe our efforts to prepare and optimize a series of conformationally constrained 3,4-disubstituted bicyclo[3.1.0]hexane glutamic acid analogs as orthosteric (glutamate site) mGlu2/3 receptor antagonists. This work led to the discovery of a highly potent and efficacious tool compound 18 (hmGlu2 IC50 46±14.2nM, hmGlu3 IC50=46.1±36.2nM). Compound 18 showed activity in the mouse forced swim test with a minimal effective dose (MED) of 1mg/kg ip. While in rat EEG studies it exhibited wake promoting effects at 3 and 10mg/kg ip without any significant effects on locomotor activity. Compound 18 thus represents a novel tool molecule for studying the impact of blocking mGlu2/3 receptors both in vitro and in vivo.
Bioorganic & Medicinal Chemistry Letters | 2015
Deyi Zhang; Maria-Jesus Blanco; Bai-Ping Ying; Daniel Timothy Kohlman; Sidney Xi Liang; Frantz Victor; Qi Chen; Joseph H. Krushinski; Sandra Ann Filla; Kevin John Hudziak; Brian Michael Mathes; Michael Philip Cohen; Deanna Piatt Zacherl; David L. Nelson; David B. Wainscott; Suzanne E. Nutter; Wendy H. Gough; John Mehnert Schaus; Yao-Chang Xu
Preclinical experiments and clinical observations suggest the potential effectiveness of selective 5-HT1F receptor agonists in migraine. Identifying compounds with enhanced selectivity is crucial to assess its therapeutic value. Replacement of the indole nucleus in 2 (LY334370) with a monocyclic phenyl ketone moiety generated potent and more selective 5-HT1F receptor agonists. Focused SAR studies around this central phenyl ring demonstrated that the electrostatic and steric interactions of the substituent with both the amide CONH group and the ketone CO group play pivotal roles in affecting the adopted conformation and thus the 5-HT1F receptor selectivity. Computational studies confirmed the observed results and provide a useful tool in the understanding of the conformational requirements for 5-HT1F receptor agonist activity and selectivity. Through this effort, the 2-F-phenyl and N-2-pyridyl series were also identified as potent and selective 5-HT1F receptor agonists.