Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Kontou is active.

Publication


Featured researches published by Maria Kontou.


Journal of Virology | 2005

Structural Determinants of Tissue Tropism and In Vivo Pathogenicity for the Parvovirus Minute Virus of Mice

Maria Kontou; Lakshmanan Govindasamy; Hyun Joo Nam; Nathan Bryant; Antonio L. Llamas-Saiz; Concepción Foces-Foces; Eva Hernando; Mari Paz Rubio; Robert McKenna; José M. Almendral; Mavis Agbandje-McKenna

ABSTRACT Two strains of the parvovirus minute virus of mice (MVM), the immunosuppressive (MVMi) and the prototype (MVMp) strains, display disparate in vitro tropism and in vivo pathogenicity. We report the crystal structures of MVMp virus-like particles (MVMpb) and native wild-type (wt) empty capsids (MVMpe), determined and refined to 3.25 and 3.75 Å resolution, respectively, and their comparison to the structure of MVMi, also refined to 3.5 Å resolution in this study. A comparison of the MVMpb and MVMpe capsids showed their structures to be the same, providing structural verification that some heterologously expressed parvovirus capsids are indistinguishable from wt capsids produced in host cells. The structures of MVMi and MVMp capsids were almost identical, but local surface conformational differences clustered from symmetry-related capsid proteins at three specific domains: (i) the icosahedral fivefold axis, (ii) the “shoulder” of the protrusion at the icosahedral threefold axis, and (iii) the area surrounding the depression at the icosahedral twofold axis. The latter two domains contain important determinants of MVM in vitro tropism (residues 317 and 321) and forward mutation residues (residues 399, 460, 553, and 558) conferring fibrotropism on MVMi. Furthermore, these structural differences between the MVM strains colocalize with tropism and pathogenicity determinants mapped for other autonomous parvovirus capsids, highlighting the importance of common parvovirus capsid regions in the control of virus-host interactions.


Acta Crystallographica Section D-biological Crystallography | 1995

Glucose analogue inhibitors of glycogen phosphorylase: from crystallographic analysis to drug prediction using GRID force-field and GOLPE variable selection.

K. A. Watson; E. P. Mitchell; Louise N. Johnson; G. Cruciani; Jong Chan Son; Claire J. F. Bichard; George W. J. Fleet; Nikos G. Oikonomakos; Maria Kontou; Spyros E. Zographos

Several inhibitors of the large regulatory enzyme glycogen phosphorylase (GP) have been studied in crystallographic and kinetic experiments. GP catalyses the first step in the phosphorylysis of glycogen to glucose-l-phosphate, which is utilized via glycolysis to provide energy to sustain muscle contraction and in the liver is converted to glucose. alpha-D-Glucose is a weak inhibitor of glycogen phosphorylase form b (GPb, K(i) = 1.7 mM) and acts as a physiological regulator of hepatic glycogen metabolism. Glucose binds to phosphorylase at the catalytic site and results in a conformational change that stabilizes the inactive T state of the enzyme, promoting the action of protein phosphatase 1 and stimulating glycogen synthase. It has been suggested that in the liver, glucose analogues with greater affinity for glycogen phosphorylase may result in a more effective regulatory agent. Several N-acetyl glucopyranosylamine derivatives have been synthesized and tested in a series of crystallographic and kinetic binding studies with GPb. The structural results of the bound enzyme-ligand complexes have been analysed together with the resulting affinities in an effort to understand and exploit the molecular interactions that might give rise to a better inhibitor. Comparison of the N-methylacetyl glucopyranosylamine (N-methylamide, K(i) = 0.032 mM) with the analogous beta-methylamide derivative (C-methylamide, K(i) = 0.16 mM) illustrate the importance of forming good hydrogen bonds and obtaining complementarity of van der Waals interactions. These studies also have shown that the binding modes can be unpredictable but may be rationalized with the benefit of structural data and that a buried and mixed polar/non-polar catalytic site poses problems for the systematic addition of functional groups. Together with previous studies of glucose analogue inhibitors of GPb, this work forms the basis of a training set suitable for three-dimensional quantitative structure-activity relationship studies. The molecules in the training set are void of problems and potential errors arising from the alignment and bound conformations of each of the ligands since the coordinates were those determined experimentally from the X-ray crystallographic refined ligand-enzyme complexes. The computational procedure described in this work involves the use of the program GRID to describe the molecular structures and the progam GOLPE to obtain the partial least squares regression model with the highest prediction ability. The GRID/GOLPE procedure performed using 51 glucose analogue inhibitors of GPb has good overall predictivity [standard deviation of error predictions (SDEP) = 0.98 and Q(2) = 0.76] and has shown good agreement with the crystallographic and kinetic results by reliably selecting regions that are known to affect the binding affinity.


PLOS ONE | 2012

Flavonoid glycosides isolated from unique legume plant extracts as novel inhibitors of xanthine oxidase.

Chrysoula Spanou; Aristidis S. Veskoukis; Thalia Kerasioti; Maria Kontou; Apostolos Angelis; Nektarios Aligiannis; Alexios-Leandros Skaltsounis; Dimitrios Kouretas

Legumes and the polyphenolic compounds present in them have gained a lot of interest due to their beneficial health implications. Dietary polyphenolic compounds, especially flavonoids, exert antioxidant properties and are potent inhibitors of xanthine oxidase (XO) activity. XO is the main contributor of free radicals during exercise but it is also involved in pathogenesis of several diseases such as vascular disorders, cancer and gout. In order to discover new natural, dietary XO inhibitors, some polyphenolic fractions and pure compounds isolated from two legume plant extracts were tested for their effects on XO activity. The fractions isolated from both Vicia faba and Lotus edulis plant extracts were potent inhibitors of XO with IC50 values range from 40–135 µg/mL and 55–260 µg/mL, respectively. All the pure polyphenolic compounds inhibited XO and their Ki values ranged from 13–767 µM. Ten of the compounds followed the non competitive inhibitory model whereas one of them was a competitive inhibitor. These findings indicate that flavonoid isolates from legume plant extracts are novel, natural XO inhibitors. Their mode of action is under investigation in order to examine their potential in drug design for diseases related to overwhelming XO action.


ChemMedChem | 2012

The σ-hole phenomenon of halogen atoms forms the structural basis of the strong inhibitory potency of C5 halogen substituted glucopyranosyl nucleosides towards glycogen phosphorylase b.

Anastasia L. Kantsadi; Joseph M. Hayes; Stella Manta; Vicky T. Skamnaki; Christos Kiritsis; Anna-Maria G. Psarra; Zissis Koutsogiannis; Athina Dimopoulou; Stavroula Theofanous; Nikolaos Nikoleousakos; Panagiotis Zoumpoulakis; Maria Kontou; George Papadopoulos; Spyros E. Zographos; Dimitris Komiotis; Demetres D. Leonidas

C5 halogen substituted glucopyranosyl nucleosides (1‐(β‐D‐glucopyranosyl)‐5‐X‐uracil; X=Cl, Br, I) have been discovered as some of the most potent active site inhibitors of glycogen phosphorylase (GP), with respective Ki values of 1.02, 3.27, and 1.94 μM. The ability of the halogen atom to form intermolecular electrostatic interactions through the σ‐hole phenomenon rather than through steric effects alone forms the structural basis of their improved inhibitory potential relative to the unsubstituted 1‐(β‐D‐glucopyranosyl)uracil (Ki=12.39 μM), as revealed by X‐ray crystallography and modeling calculations exploiting quantum mechanics methods. Good agreement was obtained between kinetics results and relative binding affinities calculated by QM/MM‐PBSA methodology for various substitutions at C5. Ex vivo experiments demonstrated that the most potent derivative (X=Cl) toward purified GP has no cytotoxicity and moderate inhibitory potency at the cellular level. In accordance, ADMET property predictions were performed, and suggest decreased polar surface areas as a potential means of improving activity in the cell.


European Journal of Drug Metabolism and Pharmacokinetics | 1994

The design of potential antidiabetic drugs: experimental investigation of a number of β-D-glucose analogue inhibitors of glycogen phosphorylase

Nikos G. Oikonomakos; Maria Kontou; Spyros E. Zographos; H. S. Tsitoura; Louise N. Johnson; K. A. Watson; E. P. Mitchell; George W. J. Fleet; Jong Chan Son; Claire J. F. Bichard; Demetres D. Leonidas; K.R. Acharya

Summaryα-D-glucose is a weak inhibitor (Ki=1.7 mM) of glycogen phosphorylase (GP) and acts as physiological regulator of hepatic glycogen metabolism; it binds to GP at the catalytic site and stabilizes the inactive T state of the enzyme promoting the action of protein phosphatase 1 and stimulating glycogen synthase. The three-dimensional structures of T state rabbit muscle GPb and the GPb-α-D-glucose complex have been exploited in the design of better regulators of GP that could shift the balance between glycogen synthesis and glycogen degradation in favour of the former. Close examination of the catalytic site with α-D-glucose bound shows that there is an empty pocket adjacent to the β-1-C position. β-D-glucose is a poorer inhibitor (Ki=7.4 mM) than α-D-glucose, but mutarotaion has prevented the binding of β-D-glucose in T state GP crystals. A series of β-D-glucose analogues has been designed and tested in kinetic and crystallographic experiments. Several compounds have been discovered that have an increased affinity for GP than the parent compound.


Chemical Biology & Drug Design | 2012

3′‐Axial CH2OH Substitution on Glucopyranose does not Increase Glycogen Phosphorylase Inhibitory Potency. QM/MM‐PBSA Calculations Suggest Why

Stella Manta; Andromachi Xipnitou; Christos Kiritsis; Anastassia L. Kantsadi; Joseph M. Hayes; Vicky T. Skamnaki; Christos Lamprakis; Maria Kontou; Panagiotis Zoumpoulakis; Spyridon E. Zographos; Demetres D. Leonidas; Dimitri Komiotis

Glycogen phosphorylase is a molecular target for the design of potential hypoglycemic agents. Structure‐based design pinpointed that the 3′‐position of glucopyranose equipped with a suitable group has the potential to form interactions with enzyme’s cofactor, pyridoxal 5′‐phosphate (PLP), thus enhancing the inhibitory potency. Hence, we have investigated the binding of two ligands, 1‐(β‐d‐glucopyranosyl)5‐fluorouracil (GlcFU) and its 3′‐CH2OH glucopyranose derivative. Both ligands were found to be low micromolar inhibitors with Ki values of 7.9 and 27.1 μm, respectively. X‐ray crystallography revealed that the 3′‐CH2OH glucopyranose substituent is indeed involved in additional molecular interactions with the PLP γ‐phosphate compared with GlcFU. However, it is 3.4 times less potent. To elucidate this discovery, docking followed by postdocking Quantum Mechanics/Molecular Mechanics – Poisson–Boltzmann Surface Area (QM/MM‐PBSA) binding affinity calculations were performed. While the docking predictions failed to reflect the kinetic results, the QM/MM‐PBSA revealed that the desolvation energy cost for binding of the 3′‐CH2OH‐substituted glucopyranose derivative out‐weigh the enthalpy gains from the extra contacts formed. The benefits of performing postdocking calculations employing a more accurate solvation model and the QM/MM‐PBSA methodology in lead optimization are therefore highlighted, specifically when the role of a highly polar/charged binding interface is significant.


Helicobacter | 2009

The C‐terminal Region of HPNAP Activates Neutrophils and Promotes Their Adhesion to Endothelial Cells

Filippos Kottakis; C. Befani; Antonios Asiminas; Maria Kontou; Georgios Koliakos; Theodora Choli-Papadopoulou

Entire Helicobacter Pylori Neutrophil Activated Protein (HPNAP) and its truncated forms NH2‐terminal region HPNAP1–57 and C‐terminal region HPNAP58–144 after cloning into pET29c vector, purification and removal of LPS traces were subjected to human neutrophil activation. Our results revealed that the C‐terminal region of HPNAP is indispensable for human neutrophil stimulation and their further adhesion to endothelial cells – a step necessary to H. pylori inflammation – in a ratio equal to that exhibited by the entire protein.


Conservation Genetics | 2011

Patterns of variability at the major histocompatibility class I and class II loci in populations of the endangered cyprinid Ladigesocypris ghigii

Katerina A. Moutou; Zissis Mamuris; Tania Firme; Maria Kontou; Theologia Sarafidou; Maria Th. Stoumboudi

The patterns of MHC diversity were studied at UAA and DAB1 loci and the two domains involved in the recognition of antigenic peptides (α2 and β1, respectively) in eight Ladigesocypris ghigii populations inhabiting streams and a concrete reservoir, in order to understand the significance of these genes in bottlenecked populations of an endemic species and develop conservation rationale. In agreement with previous study employing RAPD and mtDNA markers (Mamuris et al., Freshw Biol 50:1441–1453, 2005), both loci exhibited a very low level of polymorphism with only two and four alleles detected for UAA and DAB1, respectively. The functional MHC diversity was even lower since UAA alleles were distinguished by a single synonymous substitution. The type of habitat did not affect the level of polymorphism. Our data suggest that DAB1 polymorphism might be the outcome of the positive selection, imposed by the temporal and spatial variation of pathogen load, and the genetic drift as a result of successive habitat shrinkage and deterioration by water abstraction year after year. The populations studied were significantly less diverged at MHC loci than expected based on nuclear and mtDNA markers, suggesting that common parasites might act as causative factors to homogenize selection. Sufficient epidemiological data are required for the interpretation of the results and decision-making on suitable conservation actions.


Journal of Proteome Research | 2017

Proteomic Analysis of Human Angiogenin Interactions Reveals Cytoplasmic PCNA as a Putative Binding Partner

Demetra S.M. Chatzileontiadou; Martina Samiotaki; Annika N. Alexopoulou; Marina Cotsiki; George Panayotou; Melina Stamatiadi; Nikolaos A. A. Balatsos; Demetres D. Leonidas; Maria Kontou

Human Angiogenin (hAng) is a member of the ribonuclease A superfamily and a potent inducer of neovascularization. Protein interactions of hAng in the nucleus and cytoplasm of the human umbilical vein cell line EA.hy926 have been investigated by mass spectroscopy. Data are available via ProteomeXchange with identifiers PXD006583 and PXD006584. The first gel-free analysis of hAng immunoprecipitates revealed many statistically significant potential hAng-interacting proteins involved in crucial biological pathways. Surprisingly, proliferating cell nuclear antigen (PCNA), was found to be immunoprecipitated with hAng only in the cytoplasm. The hAng-PCNA interaction and colocalization in the specific cellular compartment was validated with immunoprecipitation, immunoblotting, and immunocytochemistry. The results revealed that PCNA is predominantly localized in the cytoplasm, while hAng is distributed both in the nucleus and in the cytoplasm. hAng and PCNA colocalize in the cytoplasm, suggesting that they may interact in this compartment.


Protein and Peptide Letters | 2012

Studies on the Essential Intramolecular Interaction Between the A1 and A2 Domains of von Willebrand Factor

Zoi Karoulia; Georgios Papadopoulos; Michail Nomikos; Angelos Thanassoulas; Theodora Choli Papadopoulou; George Nounesis; Maria Kontou; Constantinos Stathopoulos; Demetres D. Leonidas

Haemostasis depends on the balanced participation of von Willebrand factor (vWF), a large multimeric and multidomain glycoprotein with essential role during the initial steps of blood clotting. Mature vWF circulates in plasma with the form of multimers comprised of several domains with diverse functions. More specifically, the A1 domain of vWF plays crucial role in haemostasis, regulating the mechanism of platelet adhesion in sites of vascular injury while A2 domain regulates the normal turnover of vWF. Recent studies have implied that an intramolecular interaction between A1 and A2 domains exists, which prevents platelets adhesion and subsequently inhibits the initial step of the blood coagulation mechanism. In an effort to elucidate the essential nature of the interaction between these two domains, we produced and purified the corresponding recombinant unmodified polypeptides. The secondary structure of the two domains was studied individually and as a mixture using circular dichroism spectroscopy. The observed interaction was verified by ELISA competition assays using antibodies and their ability to form productive interactions was further characterized kinetically. In silico analysis (docking and molecular dynamics simulations) of the A1-A2 binding indicated three possible structural models highlighting the crucial, for this interaction, region.

Collaboration


Dive into the Maria Kontou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikos G. Oikonomakos

Indian Institute of Technology Madras

View shared research outputs
Top Co-Authors

Avatar

C. Befani

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Filippos Kottakis

Aristotle University of Thessaloniki

View shared research outputs
Researchain Logo
Decentralizing Knowledge