Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Lankinen is active.

Publication


Featured researches published by Maria Lankinen.


PLOS ONE | 2009

Fatty fish intake decreases lipids related to inflammation and insulin signaling--a lipidomics approach.

Maria Lankinen; Ursula Schwab; Arja T. Erkkilä; Tuulikki Seppänen-Laakso; Marja-Leena Hannila; Hanna Mussalo; Seppo Lehto; Matti Uusitupa; Helena Gylling; Matej Orešič

Background The evidence of the multiple beneficial health effects of fish consumption is strong, but physiological mechanisms behind these effects are not completely known. Little information is available on the effects of consumption of different type of fish. The aim of this study was to investigate how fatty fish or lean fish in a diet affect serum lipidomic profiles in subjects with coronary heart disease. Methodology and Principal Findings A pilot study was designed which included altogether 33 subjects with myocardial infarction or unstable ischemic attack in an 8-week parallel controlled intervention. The subjects were randomized to either fatty fish (n = 11), lean fish (n = 12) or control (n = 10) groups. Subjects in the fish groups had 4 fish meals per week and subjects in the control group consumed lean beef, pork and chicken. A fish meal was allowed once a week maximum. Lipidomics analyses were performed using ultra performance liquid chromatography coupled to electrospray ionization mass spectrometry and gas chromatography. Multiple bioactive lipid species, including ceramides, lysophosphatidylcholines and diacylglycerols, decreased significantly in the fatty fish group, whereas in the lean fish group cholesterol esters and specific long-chain triacylglycerols increased significantly (False Discovery Rate q-value <0.05). Conclusions/Significance The 8-week consumption of fatty fish decreased lipids which are potential mediators of lipid-induced insulin resistance and inflammation, and may be related to the protective effects of fatty fish on the progression of atherosclerotic vascular diseases or insulin resistance. Trial Registration ClinicalTrials.gov NCT00720655


Diabetologia | 2009

Link between plasma ceramides, inflammation and insulin resistance: association with serum IL-6 concentration in patients with coronary heart disease

V.D.F. de Mello; Maria Lankinen; Ursula Schwab; Marjukka Kolehmainen; Seppo Lehto; Tuulikki Seppänen-Laakso; Matej Orešič; Leena Pulkkinen; Matti Uusitupa; Arja T. Erkkilä

Aims/hypothesisCeramides and IL-6 have a role in immune–inflammatory responses and cardiovascular diseases, and are suggested to be involved in insulin and glucose metabolism. We sought to assess the associations of circulating levels of IL-6, TNF-α and high-sensitivity C reactive protein (hsCRP), which are inflammatory markers related to insulin resistance (IR), with the plasma lipid metabolites ceramides and diacylglycerols (DAG) in patients with CHD.MethodsCross-sectional analyses were carried out on data from 33 patients with CHD. Serum levels of the inflammatory markers and plasma lipid metabolites (lipidomics approach performed by ultra-performance liquid chromatography coupled to electrospray ionisation MS) were measured at the same time point as insulin resistance (IR) (HOMA-IR index).ResultsSerum circulating levels of IL-6 were strongly correlated with plasma ceramide concentrations (r = 0.59, p < 0.001). Adjustments for serum TNF-α or hsCRP levels, smoking, BMI, age, sex or HOMA-IR did not change the results (p < 0.001). After adjustments for the effect of serum inflammatory markers (TNF-α or hsCRP), HOMA-IR and BMI the correlation between plasma DAG and serum IL-6 (r = 0.33) was also significant (p < 0.03). In a linear regression model, circulating levels of both ceramides and TNF-α had a significant independent influence on circulating levels of IL-6, altogether accounting for 41% of its variation (p < 0.001).Conclusions/interpretationOur results strongly suggest that the link between ceramides, IR and inflammation is related to the inflammatory marker IL-6. Ceramides may contribute to the induction of inflammation involved in IR states that frequently coexist with CHD.Trial registration:ClinicalTrials.gov NCT00720655Funding:The study was supported by the Finnish Cultural Foundation, the North-Savo Regional Fund of the Finnish Cultural Foundation, the Yrjö Jahnsson Foundation, the Sigrid Juselius Foundation, the Juho Vainio Foundation, the Kuopio University Hospital (grant 510RA07), the Academy of Finland (Projects 117844 and 118590) and by the Nordic Centre of Excellence on ‘Systems biology in controlled dietary interventions and cohort studies’ (SYSDIET), Project 070014.


PLOS ONE | 2011

Whole Grain Products, Fish and Bilberries Alter Glucose and Lipid Metabolism in a Randomized, Controlled Trial: The Sysdimet Study

Maria Lankinen; Ursula Schwab; Marjukka Kolehmainen; Jussi Paananen; Kaisa Poutanen; Hannu Mykkänen; Tuulikki Seppänen-Laakso; Helena Gylling; Matti Uusitupa; Matej Orešič

Background Due to the growing prevalence of type 2 diabetes, new dietary solutions are needed to help improve glucose and lipid metabolism in persons at high risk of developing the disease. Herein we investigated the effects of low-insulin-response grain products, fatty fish, and berries on glucose metabolism and plasma lipidomic profiles in persons with impaired glucose metabolism. Methodology/Principal Findings Altogether 106 men and women with impaired glucose metabolism and with at least two other features of the metabolic syndrome were included in a 12-week parallel dietary intervention. The participants were randomized into three diet intervention groups: (1) whole grain and low postprandial insulin response grain products, fatty fish three times a week, and bilberries three portions per day (HealthyDiet group), (2) Whole grain enriched diet (WGED) group, which includes principally the same grain products as group (1), but with no change in fish or berry consumption, and (3) refined wheat breads (Control). Oral glucose tolerance, plasma fatty acids and lipidomic profiles were measured before and after the intervention. Self-reported compliance with the diets was good and the body weight remained constant. Within the HealthyDiet group two hour glucose concentration and area-under-the-curve for glucose decreased and plasma proportion of (n-3) long-chain PUFAs increased (False Discovery Rate p-values <0.05). Increases in eicosapentaenoic acid and docosahexaenoic acid associated curvilinearly with the improved insulin secretion and glucose disposal. Among the 364 characterized lipids, 25 changed significantly in the HealthyDiet group, including multiple triglycerides incorporating the long chain (n-3) PUFA. Conclusions/Significance The results suggest that the diet rich in whole grain and low insulin response grain products, bilberries, and fatty fish improve glucose metabolism and alter the lipidomic profile. Therefore, such a diet may have a beneficial effect in the efforts to prevent type 2 diabetes in high risk persons. Trial Registration ClinicalTrials.gov NCT00573781


Nutrition Metabolism and Cardiovascular Diseases | 2010

Dietary carbohydrate modification alters serum metabolic profiles in individuals with the metabolic syndrome.

Maria Lankinen; Ursula Schwab; Peddinti Gopalacharyulu; Tuulikki Seppänen-Laakso; Laxman Yetukuri; Marko Sysi-Aho; P. Kallio; Tapani Suortti; David E. Laaksonen; Helena Gylling; Kaisa Poutanen; Marjukka Kolehmainen; Matej Orešič

BACKGROUND AND AIMS Whole-grain cereals and diets with a low glycemic index may protect against the development of type 2 diabetes and heart disease, but the mechanisms are poorly understood. We studied the effect of carbohydrate modification on serum metabolic profiles, including lipids and branched chain amino acids, and dependencies between these and specific gene expression pathways in adipose tissue. METHODS AND RESULTS Twenty subjects with metabolic syndrome were selected from the larger FUNGENUT study population, randomized either to a diet high in oat and wheat bread and potato (OWP) or rye bread and pasta (RP). Serum metabolomics analyses were performed using ultra-performance liquid chromatography coupled to electrospray ionization mass spectrometry (UPLC/MS), gas chromatography (GC) and UPLC. In the OWP group multiple proinflammatory lysophosphatidylcholines increased, while in the RP group docosahexaenoic acid (DHA 22:6n-3) increased and isoleucine decreased. mRNA expression of stress reactions- and adipose tissue differentiation-related genes were up-regulated in adipose tissue in the OWP group. In the RP group, however, pathways related to stress reactions and insulin signaling and energy metabolism were down-regulated. The lipid profiles had the strongest association with the changes in the adipose tissue differentiation pathway when using the elastic net regression model of the lipidomic profiles on selected pathways. CONCLUSION Our results suggest that the dietary carbohydrate modification alters the serum metabolic profile, especially in lysoPC species, and may, thus, contribute to proinflammatory processes which in turn promote adverse changes in insulin and glucose metabolism.


Journal of Nutrition | 2015

Nontargeted Metabolite Profiling Discriminates Diet-Specific Biomarkers for Consumption of Whole Grains, Fatty Fish, and Bilberries in a Randomized Controlled Trial

Kati Hanhineva; Maria Lankinen; Anna Pedret; Ursula Schwab; Marjukka Kolehmainen; Jussi Paananen; Vanessa D. de Mello; Rosa Solà; Marko Lehtonen; Kaisa Poutanen; Matti Uusitupa; Hannu Mykkänen

BACKGROUND Nontargeted metabolite profiling allows for concomitant examination of a wide range of metabolite species, elucidating the metabolic alterations caused by dietary interventions. OBJECTIVE The aim of the current study was to investigate the effects of dietary modifications on the basis of increasing consumption of whole grains, fatty fish, and bilberries on plasma metabolite profiles to identify applicable biomarkers for dietary intake and endogenous metabolism. METHODS Metabolite profiling analysis was performed on fasting plasma samples collected in a 12-wk parallel-group intervention with 106 participants with features of metabolic syndrome who were randomly assigned to 3 dietary interventions: 1) whole-grain products, fatty fish, and bilberries [healthy diet (HD)]; 2) a whole-grain-enriched diet with the same grain products as in the HD intervention but with no change in fish or berry consumption; and 3) refined-wheat breads and restrictions on fish and berries (control diet). In addition, correlation analyses were conducted with the food intake data to define the food items correlating with the biomarker candidates. RESULTS Nontargeted metabolite profiling showed marked differences in fasting plasma after the intervention diets compared with the control diet. In both intervention groups, a significant increase was observed in 2 signals identified as glucuronidated alk(en)-ylresorcinols [corrected P value (Pcorr) < 0.05], which correlated strongly with the intake of whole-grain products (r = 0.63, P < 0.001). In addition, the HD intervention increased the signals for furan fatty acids [3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF)], hippuric acid, and various lipid species incorporating polyunsaturated fatty acids (Pcorr < 0.05). In particular, plasma CMPF correlated strongly with the intake of fish (r = 0.47, P < 0.001) but not with intakes of any other foods. CONCLUSIONS Novel biomarkers of the intake of health-beneficial food items included in the Nordic diet were identified by the metabolite profiling of fasting plasma and confirmed by the correlation analyses with dietary records. The one with the most potential was CMPF, which was shown to be a highly specific biomarker for fatty fish intake. This trial was registered at clinicaltrials.gov as NCT00573781.


Journal of Nutrition | 2011

Metabolomic Analysis of Plasma Metabolites That May Mediate Effects of Rye Bread on Satiety and Weight Maintenance in Postmenopausal Women

Maria Lankinen; Ursula Schwab; Tuulikki Seppänen-Laakso; Ismo Mattila; Katri S. Juntunen; Hannu Mykkänen; Kaisa Poutanen; Helena Gylling; Matej Orešič

The evidence of the beneficial health effects of dietary fiber and whole grain consumption is strong, but the underlying mechanisms are not completely understood. Here, we investigate how the consumption of high-fiber rye bread (RB) or white-wheat bread (WB) modifies the plasma metabolomic profiles in postmenopausal women. The study was a randomized crossover trial consisting of 8-wk intervention periods and an 8-wk washout period. The study included 39 postmenopausal women with elevated serum total cholesterol (5.0-8.5 mmol/L) and BMI 20-33 kg/m(2). During the intervention periods, the study breads contributed to least 20% of total energy intake. Two analytical platforms for metabolomics were applied. Lipidomic analysis was performed using ultra performance liquid chromatography coupled to electrospray ionization MS and the other metabolites, including sterols, organic acids, and alcohols, were analyzed by 2-dimensional GC coupled to time-of-flight MS. Altogether, 540 metabolites were profiled. Ribitol (P < 0.001), ribonic acid (P < 0.001), and indoleacetic acid (P < 0.001) increased during the RB consumption period. Ribonic acid correlated positively with tryptophan (r = 0.40; P = 0.003), which is a precursor for the biosynthesis of hunger-depressing serotonin. There were no changes in plasma lipidomic profiles during the RB or WB intervention periods. The results suggest that 8-wk consumption of high-fiber rye bread increases metabolites that might mediate positive effects of rye bread on satiety and weight maintenance.


PLOS ONE | 2014

Effects of Whole Grain, Fish and Bilberries on Serum Metabolic Profile and Lipid Transfer Protein Activities: A Randomized Trial (Sysdimet)

Maria Lankinen; Marjukka Kolehmainen; Tiina Jääskeläinen; Jussi Paananen; Laura Joukamo; Antti J. Kangas; Pasi Soininen; Kaisa Poutanen; Hannu Mykkänen; Helena Gylling; Matej Orešič; Matti Jauhiainen; Mika Ala-Korpela; Matti Uusitupa; Ursula Schwab

Objective We studied the combined effects of wholegrain, fish and bilberries on serum metabolic profile and lipid transfer protein activities in subjects with the metabolic syndrome. Methods Altogether 131 subjects (40–70 y, BMI 26–39 kg/m2) with impaired glucose metabolism and features of the metabolic syndrome were randomized into three groups with 12-week periods according to a parallel study design. They consumed either: a) wholegrain and low postprandial insulin response grain products, fatty fish 3 times a week, and bilberries 3 portions per day (HealthyDiet), b) wholegrain and low postprandial insulin response grain products (WGED), or c) refined wheat breads as cereal products (Control). Altogether 106 subjects completed the study. Serum metabolic profile was studied using an NMR-based platform providing information on lipoprotein subclasses and lipids as well as low-molecular-weight metabolites. Results There were no significant differences in clinical characteristics between the groups at baseline or at the end of the intervention. Mixed model analyses revealed significant changes in lipid metabolites in the HealthyDiet group during the intervention compared to the Control group. All changes reflected increased polyunsaturation in plasma fatty acids, especially in n-3 PUFAs, while n-6 and n-7 fatty acids decreased. According to tertiles of changes in fish intake, a greater increase of fish intake was associated with increased concentration of large HDL particles, larger average diameter of HDL particles, and increased concentrations of large HDL lipid components, even though total levels of HDL cholesterol remained stable. Conclusions The results suggest that consumption of diet rich in whole grain, bilberries and especially fatty fish causes changes in HDL particles shifting their subclass distribution toward larger particles. These changes may be related to known protective functions of HDL such as reverse cholesterol transport and could partly explain the known protective effects of fish consumption against atherosclerosis. Trial Registration The study was registered at ClinicalTrials.gov NCT00573781.


The Lancet Diabetes & Endocrinology | 2017

Omega-6 fatty acid biomarkers and incident type 2 diabetes: Pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies

Jason H.Y. Wu; Matti Marklund; Fumiaki Imamura; Nathan L. Tintle; Andres V. Ardisson Korat; Janette de Goede; Xia Zhou; Wei Sin Yang; Marcia C. de Oliveira Otto; Janine Kröger; Waqas T. Qureshi; Jyrki K. Virtanen; Julie K. Bassett; Alexis C. Frazier-Wood; Maria Lankinen; Rachel A. Murphy; Kalina Rajaobelina; Liana C. Del Gobbo; Nita G. Forouhi; Robert Luben; Kay-Tee Khaw; Nicholas J. Wareham; Anya Kalsbeek; Jenna Veenstra; Juhua Luo; Frank B. Hu; Hung Ju Lin; David S. Siscovick; Heiner Boeing; Tzu An Chen

BACKGROUND The metabolic effects of omega-6 polyunsaturated fatty acids (PUFAs) remain contentious, and little evidence is available regarding their potential role in primary prevention of type 2 diabetes. We aimed to assess the associations of linoleic acid and arachidonic acid biomarkers with incident type 2 diabetes. METHODS We did a pooled analysis of new, harmonised, individual-level analyses for the biomarkers linoleic acid and its metabolite arachidonic acid and incident type 2 diabetes. We analysed data from 20 prospective cohort studies from ten countries (Iceland, the Netherlands, the USA, Taiwan, the UK, Germany, Finland, Australia, Sweden, and France), with biomarkers sampled between 1970 and 2010. Participants included in the analyses were aged 18 years or older and had data available for linoleic acid and arachidonic acid biomarkers at baseline. We excluded participants with type 2 diabetes at baseline. The main outcome was the association between omega-6 PUFA biomarkers and incident type 2 diabetes. We assessed the relative risk of type 2 diabetes prospectively for each cohort and lipid compartment separately using a prespecified analytic plan for exposures, covariates, effect modifiers, and analysis, and the findings were then pooled using inverse-variance weighted meta-analysis. FINDINGS Participants were 39 740 adults, aged (range of cohort means) 49-76 years with a BMI (range of cohort means) of 23·3-28·4 kg/m2, who did not have type 2 diabetes at baseline. During a follow-up of 366 073 person-years, we identified 4347 cases of incident type 2 diabetes. In multivariable-adjusted pooled analyses, higher proportions of linoleic acid biomarkers as percentages of total fatty acid were associated with a lower risk of type 2 diabetes overall (risk ratio [RR] per interquintile range 0·65, 95% CI 0·60-0·72, p<0·0001; I2=53·9%, pheterogeneity=0·002). The associations between linoleic acid biomarkers and type 2 diabetes were generally similar in different lipid compartments, including phospholipids, plasma, cholesterol esters, and adipose tissue. Levels of arachidonic acid biomarker were not significantly associated with type 2 diabetes risk overall (RR per interquintile range 0·96, 95% CI 0·88-1·05; p=0·38; I2=63·0%, pheterogeneity<0·0001). The associations between linoleic acid and arachidonic acid biomarkers and the risk of type 2 diabetes were not significantly modified by any prespecified potential sources of heterogeneity (ie, age, BMI, sex, race, aspirin use, omega-3 PUFA levels, or variants of the FADS gene; all pheterogeneity≥0·13). INTERPRETATION Findings suggest that linoleic acid has long-term benefits for the prevention of type 2 diabetes and that arachidonic acid is not harmful. FUNDING Funders are shown in the appendix.


Metabolism-clinical and Experimental | 2016

Fatty acid metabolism is altered in non-alcoholic steatohepatitis independent of obesity.

Paula Walle; Markus Takkunen; Ville Männistö; Maija Vaittinen; Maria Lankinen; Vesa Kärjä; Pirjo Käkelä; Jyrki Ågren; Mika Tiainen; Ursula Schwab; Johanna Kuusisto; Markku Laakso; Jussi Pihlajamäki

BACKGROUND Non-alcoholic steatohepatitis (NASH) is associated with changes in fatty acid (FA) metabolism. However, specific changes in metabolism and hepatic mRNA expression related to NASH independent of simple steatosis, obesity and diet are unknown. METHODS Liver histology, serum and liver FA composition and estimated enzyme activities based on the FA ratios in cholesteryl esters and triglycerides were assessed in 92 obese participants of the Kuopio Obesity Surgery Study (KOBS) divided to those with normal liver, steatosis or NASH (30 men and 62 women, age 46.8±9.5years (mean±SD), BMI 44.2±6.2kg/m(2)). Plasma FA composition was also investigated in the Metabolic Syndrome in Men (METSIM) Study (n=769), in which serum alanine aminotransferase (ALT) was used as a marker of liver disease. RESULTS Obese individuals with NASH had higher activity of estimated activities of delta-6 desaturase (D6D, p<0.002) and stearoyl-CoA desaturase 1 (SCD1, p<0.002) and lower activity of delta-5 desaturase (D5D, p<0.002) when compared to individuals with normal liver. Estimated activities of D5D, D6D and SCD1 correlated positively between liver and serum indicating that serum estimates reflected liver metabolism. Accordingly, NASH was associated with higher hepatic mRNA expression of corresponding genes FADS1, FADS2 and SCD. Finally, differences in FA metabolism that associated with NASH in obese individuals were also associated with high ALT in the METSIM Study. CONCLUSIONS We demonstrated alterations in FA metabolism and endogenous desaturase activities that associate with NASH, independent of obesity and diet. This suggests that changes in endogenous FA metabolism are related to NASH and that they may contribute to the progression of the disease.


Scientific Reports | 2017

Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study

Vanessa D. de Mello; Jussi Paananen; Jaana Lindström; Maria Lankinen; Lin Shi; Johanna Kuusisto; Jussi Pihlajamäki; Seppo Auriola; Marko Lehtonen; Olov Rolandsson; Ingvar A. Bergdahl; Elise Nordin; Pirjo Ilanne-Parikka; Sirkka Keinänen-Kiukaanniemi; Rikard Landberg; Johan G. Eriksson; Jaakko Tuomilehto; Kati Hanhineva; Matti Uusitupa

Wide-scale profiling technologies including metabolomics broaden the possibility of novel discoveries related to the pathogenesis of type 2 diabetes (T2D). By applying non-targeted metabolomics approach, we investigated here whether serum metabolite profile predicts T2D in a well-characterized study population with impaired glucose tolerance by examining two groups of individuals who took part in the Finnish Diabetes Prevention Study (DPS); those who either early developed T2D (n = 96) or did not convert to T2D within the 15-year follow-up (n = 104). Several novel metabolites were associated with lower likelihood of developing T2D, including indole and lipid related metabolites. Higher indolepropionic acid was associated with reduced likelihood of T2D in the DPS. Interestingly, in those who remained free of T2D, indolepropionic acid and various lipid species were associated with better insulin secretion and sensitivity, respectively. Furthermore, these metabolites were negatively correlated with low-grade inflammation. We replicated the association between indolepropionic acid and T2D risk in one Finnish and one Swedish population. We suggest that indolepropionic acid, a gut microbiota-produced metabolite, is a potential biomarker for the development of T2D that may mediate its protective effect by preservation of β-cell function. Novel lipid metabolites associated with T2D may exert their effects partly through enhancing insulin sensitivity.

Collaboration


Dive into the Maria Lankinen's collaboration.

Top Co-Authors

Avatar

Ursula Schwab

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Matti Uusitupa

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Marjukka Kolehmainen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Kaisa Poutanen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannu Mykkänen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Jussi Paananen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Kati Hanhineva

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Marko Lehtonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Tuulikki Seppänen-Laakso

VTT Technical Research Centre of Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge