Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Magdalena Senn is active.

Publication


Featured researches published by Maria Magdalena Senn.


Molecular Microbiology | 2004

In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus

Tanja Schneider; Maria Magdalena Senn; Brigitte Berger-Bächi; Alessandro Tossi; Hans-Georg Sahl; Imke Wiedemann

Staphylococcus aureus peptidoglycan is cross‐linked via a characteristic pentaglycine interpeptide bridge. Genetic analysis had identified three peptidyltransferases, FemA, FemB and FemX, to catalyse the formation of the interpeptide bridge, using glycyl t‐RNA as Gly donor. To analyse the pentaglycine bridge formation in vitro, we purified the potential substrates for FemA, FemB and FemX, UDP‐MurNAc‐pentapeptide, lipid I and lipid II and the staphylococcal t‐RNA pool, as well as His‐tagged Gly‐tRNA‐synthetase and His‐tagged FemA, FemB and FemX. We found that FemX used lipid II exclusively as acceptor for the first Gly residue. Addition of Gly 2,3 and of Gly 4,5 was catalysed by FemA and FemB, respectively, and both enzymes were specific for lipid II‐Gly1 and lipid II‐Gly3 as acceptors. None of the FemABX enzymes required the presence of one or two of the other Fem proteins for activity; rather, bridge formation was delayed in the in vitro system when all three enzymes were present. The in vitro assembly system described here will enable detailed analysis of late, membrane‐associated steps of S. aureus peptidoglycan biosynthesis.


Journal of Bacteriology | 2005

Molecular Analysis and Organization of the σB Operon in Staphylococcus aureus

Maria Magdalena Senn; Philipp Giachino; Dagmar Homerova; Andrea Steinhuber; Jochen Strassner; Jan Kormanec; Ursula Flückiger; Brigitte Berger-Bächi; Markus Bischoff

The alternative sigma factor sigma(B) of Staphylococcus aureus controls the expression of a variety of genes, including virulence determinants and global regulators. Genetic manipulations and transcriptional start point (TSP) analyses showed that the sigB operon is transcribed from at least two differentially controlled promoters: a putative sigma(A)-dependent promoter, termed sigB(p1), giving rise to a 3.6-kb transcript covering sa2059-sa2058-rsbU-rsbV-rsbW-sigB, and a sigma(B)-dependent promoter, sigB(p3), initiating a 1.6-kb transcript covering rsbV-rsbW-sigB. TSP and promoter-reporter gene fusion experiments indicated that a third promoter, tentatively termed sigB(p2) and proposed to lead to a 2.5-kb transcript, including rsbU-rsbV-rsbW-sigB, might govern the expression of the sigB operon. Environmental stresses, such as heat shock and salt stress, induced a rapid response within minutes from promoters sigB(p1) and sigB(p3). In vitro, the sigB(p1) promoter was active in the early growth stages, while the sigB(p2) and sigB(p3) promoters produced transcripts throughout the growth cycle, with sigB(p3) peaking around the transition state between exponential growth and stationary phase. The amount of sigB transcripts, however, did not reflect the concentration of sigma(B) measured in cell extracts, which remained constant over the entire growth cycle. In a guinea pig cage model of infection, sigB transcripts were as abundant 2 and 8 days postinoculation as values found in vitro, demonstrating that sigB is indeed transcribed during the course of infection. Physical interactions between staphylococcal RsbU-RsbV, RsbV-RsbW, and RsbW-sigma(B) were inferred from a yeast (Saccharomyces cerevisiae) two-hybrid approach, indicating the presence of a partner-switching mechanism in the sigma(B) activation cascade similar to that of Bacillus subtilis. The finding that overexpression of RsbU was sufficient to trigger an immediate and strong activation of sigma(B), however, signals a relevant difference in the regulation of sigma(B) activation between B. subtilis and S. aureus in the cascade upstream of RsbU.


Infection and Immunity | 2003

The sigma(B) regulon influences internalization of Staphylococcus aureus by osteoblasts

Sean P. Nair; Markus Bischoff; Maria Magdalena Senn; Brigitte Berger-Bächi

ABSTRACT Individual strains of Staphylococcus aureus have different capacities to become internalized by osteoblasts. Here we report that the levels of σB expressed by S. aureus correlate with the capacity of this bacterium to be internalized by osteoblasts. However, σB is not essential for internalization and does not necessarily account for the differences in the capacities of strains to be internalized.


International Journal of Medical Microbiology | 2010

Regulation of antibiotic resistance in Staphylococcus aureus

Nadine McCallum; Brigitte Berger-Bächi; Maria Magdalena Senn

Staphylococcus aureus has a formidable ability to adapt to varying environmental conditions and an extraordinary capacity to rapidly become resistant to virtually all antibiotics. Resistance develops either through mutations and rearrangements within the staphylococcal genome, or by the acquisition of resistance determinants. Antibiotic resistances often impose a fitness burden on the host. Such biological costs can be reduced by tight regulation and antibiotic-inducible expression of resistance genes, or by compensatory mutations. Resistance induction by antibiotics can be mediated by dedicated, antibiotic-recognizing signal transducers or by mechanisms relieving translational attenuation. Antibiotic tolerance and the expression of resistance phenotypes can also be strongly influenced by the genetic backgrounds of strains and several other factors. Modification and indirect regulation of resistance levels can occur by mutations that alter gene expression or substrate specificity of genes contributing to resistance. Insertion elements can alter resistance profiles by turning relevant genes on or off. Environmental conditions and stress response mechanisms triggered by perturbation of the cell envelope, DNA damage, or faulty intermediary metabolism can also have an impact on resistance development and expression. Clinically relevant resistance is often built up through multiple steps, each of which contributes to an increase in resistance. The driving force behind resistance formation is antibiotic stress, and under clinical conditions selection for resistance is continuously competing with selection for bacterial fitness.


PLOS ONE | 2013

Mutation in the C-di-AMP cyclase dacA affects fitness and resistance of methicillin resistant Staphylococcus aureus.

Vanina Dengler; Nadine McCallum; Patrick Kiefer; Philipp Christen; Andrea Patrignani; Julia A. Vorholt; Brigitte Berger-Bächi; Maria Magdalena Senn

Faster growing and more virulent strains of methicillin resistant Staphylococcus aureus (MRSA) are increasingly displacing highly resistant MRSA. Elevated fitness in these MRSA is often accompanied by decreased and heterogeneous levels of methicillin resistance; however, the mechanisms for this phenomenon are not yet fully understood. Whole genome sequencing was used to investigate the genetic basis of this apparent correlation, in an isogenic MRSA strain pair that differed in methicillin resistance levels and fitness, with respect to growth rate. Sequencing revealed only one single nucleotide polymorphism (SNP) in the diadenylate cyclase gene dacA in the faster growing but less resistant strain. Diadenylate cyclases were recently discovered to synthesize the new second messenger cyclic diadenosine monophosphate (c-di-AMP). Introduction of this mutation into the highly resistant but slower growing strain reduced resistance and increased its growth rate, suggesting a direct connection between the dacA mutation and the phenotypic differences of these strains. Quantification of cellular c-di-AMP revealed that the dacA mutation decreased c-di-AMP levels resulting in reduced autolysis, increased salt tolerance and a reduction in the basal expression of the cell wall stress stimulon. These results indicate that c-di-AMP affects cell envelope-related signalling in S. aureus. The influence of c-di-AMP on growth rate and methicillin resistance in MRSA indicate that altering c-di-AMP levels could be a mechanism by which MRSA strains can increase their fitness levels by reducing their methicillin resistance levels.


Journal of Bacteriology | 2005

σB Activity in a Staphylococcus aureus hemB Mutant

Maria Magdalena Senn; Markus Bischoff; Christof von Eiff; Brigitte Berger-Bächi

Inactivation of hemB in Staphylococcus aureus strain Newman resulted in a small-colony phenotype and was accompanied by an altered expression pattern of global regulators and control of virulence factor production. Transcription profiles followed over 15 h by Northern blot analyses revealed that transcripts of the global regulators arl, rot, sae, sarR, sarS, srr, svrA, and sigB disappeared after the exponential phase and that both agr transcripts were completely absent in the hemB mutant. Apart from a general concentration of transcriptional activity to the exponential phase, premature gene expression was observed for rot, hla, and spa. Nevertheless, reported sigmaB-dependent transcripts, such as sarC and clfA, were produced throughout the 15-h growth period monitored. The absence of these transcripts in a hemB sigB double mutant demonstrated their dependence on sigmaB and indicated an unexpected, permanent sigmaB activity in the hemB mutant. Variations in the extents of the directly sigmaB-controlled asp23, rsbVW-sigB, and sarC transcripts argue for additional factors modulating sigmaB activity. This study provides the first extended synopsis of the transcriptional patterns of different regulators over the entire growth cycle in the widely used Newman strain.


BMC Microbiology | 2011

Contribution of SecDF to Staphylococcus aureus resistance and expression of virulence factors

Chantal Quiblier; Annelies S. Zinkernagel; Reto A. Schuepbach; Brigitte Berger-Bächi; Maria Magdalena Senn

BackgroundSecDF is an accessory factor of the conserved Sec protein translocation machinery and belongs to the resistance-nodulation-cell division (RND) family of multidrug exporters. SecDF has been shown in Escherichia coli and Bacillus subtilis to be involved in the export of proteins. RND proteins can mediate resistance against various substances and might be of relevance in antimicrobial therapy. The role of RND proteins in Staphylococcus aureus has not yet been determined.ResultsMarkerless deletion mutants were constructed to analyze the impact of the so far uncharacterized RND proteins in S. aureus. While the lack of Sa2056 and Sa2339 caused no phenotype regarding growth and resistance, the secDF mutant resulted in a pleiotropic phenotype. The secDF mutant was cold sensitive, but grew normally in rich medium at 37°C. Resistance to beta-lactams, glycopeptides and the RND substrates acriflavine, ethidium bromide and sodium dodecyl sulfate was reduced. The secDF mutant showed an aberrant cell separation and increased spontaneous and Triton X-100 induced autolysis, although the amounts of penicillin-binding proteins in the membrane were unchanged. The impact of secDF deletion on transcription and expression of specific virulence determinants varied: While coagulase transcription and activity were reduced, the opposite was observed for the autolysin Atl. A reduction of the transcription of the cell wall anchored protein A (spa) was also found. The accumulation of SpA in the membrane and lowered amounts in the cell wall pointed to an impaired translocation.ConclusionsThe combination of different effects of secDF deletion on transcription, regulation and translocation lead to impaired cell division, reduced resistance and altered expression of virulence determinants suggesting SecDF to be of major relevance in S. aureus. Thus SecDF could be a potential target for the control and eradication of S. aureus in the future.


Journal of Clinical Microbiology | 2014

Characterization of Streptococcus tigurinus Small-Colony Variants Causing Prosthetic Joint Infection by Comparative Whole-Genome Analyses

Andrea Zbinden; Chantal Quiblier; David Hernandez; Kathrin Herzog; Paul Bodler; Maria Magdalena Senn; Yann Gizard; Jacques Schrenzel; Patrice Francois

ABSTRACT Small-colony variants (SCVs) of bacteria are associated with recurrent and persistent infections. We describe for the first time SCVs of Streptococcus tigurinus in a patient with a prosthetic joint infection. S. tigurinus is a novel pathogen of the Streptococcus mitis group and causes invasive infections. We sought to characterize S. tigurinus SCVs using experimental methods and find possible genetic explanations for their phenotypes. The S. tigurinus SCVs were compared with the wild-type (WT) isolate using phenotypic methods, including growth under different conditions, autolysis, and visualization of the cell ultrastructure by use of transmission electron microscopy (TEM). Furthermore, comparative genome analyses were performed. The S. tigurinus SCVs displayed reduced growth compared to the WT and showed either a very stable or a fluctuating SCV phenotype. TEM analyses revealed major alterations in cell separation and morphological abnormalities, which were partially explained by impaired autolytic behavior. Intriguingly, the SCVs were more resistant to induced autolysis. Whole-genome sequencing revealed mutations in the genes involved in general cell metabolism, cell division, stringent response, and virulence. Clinically, the patient recovered after a 2-stage exchange of the prosthesis. Comparative whole-genome sequencing in clinical strains is a useful tool for identifying novel genetic signatures leading to the most persistent bacterial forms. The detection of viridans streptococcal SCVs is challenging in a clinical laboratory due to the small colony size. Thus, it is of major clinical importance for microbiologists and clinicians to be aware of viridans streptococcal SCVs, such as those of S. tigurinus, which lead to difficult-to-treat infections.


Applied and Environmental Microbiology | 2009

Zif, the Zoocin A Immunity Factor, Is a FemABX-Like Immunity Protein with a Novel Mode of Action

Shaw R. Gargis; Amy S. Gargis; Harry E. Heath; Lucie S. Heath; Paul A. LeBlanc; Maria Magdalena Senn; Brigitte Berger-Bächi; Robin S. Simmonds; Gary L. Sloan

ABSTRACT Producer cell immunity to the streptococcolytic enzyme zoocin A, which is a d-alanyl-l-alanine endopeptidase, is due to Zif, the zoocin A immunity factor. Zif has high degrees of similarity to MurM and MurN (members of the FemABX family of proteins), which are responsible for the addition of amino acids to cross bridges during peptidoglycan synthesis in streptococci. In this study, purified peptidoglycans from strains with and without zif were compared to determine how Zif modifies the peptidoglycan layer to cause resistance to zoocin A. The peptidoglycan from each strain was hydrolyzed using the streptococcolytic phage lysin B30, and the resulting muropeptides were separated by reverse-phase high-pressure liquid chromatography, labeled with 4-sulfophenyl isothiocyanate, and analyzed by tandem mass spectrometry in the negative-ion mode. It was determined that Zif alters the peptidoglycan by increasing the proportion of cross bridges containing three l-alanines instead of two. This modification decreased binding of the recombinant target recognition domain of zoocin A to peptidoglycan. Zif-modified peptidoglycan also was less susceptible to hydrolysis by the recombinant catalytic domain of zoocin A. Thus, Zif is a novel FemABX-like immunity factor because it provides resistance to a bacteriolytic endopeptidase by lengthening the peptidoglycan cross bridge rather than by causing an amino acid substitution.


Journal of Antimicrobial Chemotherapy | 2017

Comparison of phenotypic methods for the detection of penicillinase in Staphylococcus aureus and proposal of a practical diagnostic approach

Michael Hombach; Christoph Weissert; Maria Magdalena Senn; Reinhard Zbinden

Objectives Disc diffusion is a cost-efficient, low-complexity, reliable method for detection of blaZ -mediated benzylpenicillin resistance in Staphylococcus aureus if the zone edge is inspected. EUCAST breakpoints cannot fully separate β-lactamase-positive from β-lactamase-negative strains, and EUCAST recommends the zone edge test. Literature on nitrocefin-based testing and the zone edge test is scarce with wide variations in reported assay performance. Methods This study compared two different nitrocefin-based commercial and in-house tests and the EUCAST-based zone edge test for penicillinase detection in S. aureus applying a PCR-based gold standard. Results In total, 215 non-duplicate clinical S. aureus isolates were included in the study, of which 127 (59.1%) did not harbour a blaZ gene, whereas 88 (40.9%) were blaZ positive. This study showed that for blaZ detection the zone edge test is more sensitive (96.6%) than nitrocefin tests independent of using nitrocefin discs (87.5% sensitivity) or solution (89.8% sensitivity), and that the significant inter-person variations of the zone edge test are probably related to the training level of the individual investigators (individual sensitivity ranging from 68.2% to 96.6%, specificity ranging from 89.8% to 100%). Conclusions In addition to continued and strict training of investigators, we propose mandatory checking of benzylpenicillin zone edges, particularly in an investigation zone from 26 to 30 mm, which can result in improved specificity/positive predictive value of the zone edge test (from 98.4% to 100%) but retains the high sensitivity/negative predictive value of the method.

Collaboration


Dive into the Maria Magdalena Senn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge