Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia Stutzmann Meier is active.

Publication


Featured researches published by Patricia Stutzmann Meier.


Circulation Research | 2004

Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin

Christian M. Matter; Pia K. Schuler; Patrizia Alessi; Patricia Stutzmann Meier; Romeo Ricci; Dongming Zhang; Cornelia Halin; Patrizia Castellani; Luciano Zardi; Christoph Hofer; Matteo Montani; Dario Neri; Thomas F. Lüscher

Current imaging modalities of human atherosclerosis, such as angiography, ultrasound, and computed tomography, visualize plaque morphology. However, methods that provide insight into plaque biology using molecular tools are still insufficient. The extra-domain B (ED-B) is inserted into the fibronectin molecule by alternative splicing during angiogenesis and tissue remodeling but is virtually undetectable in normal adult tissues. Angiogenesis and tissue repair are also hallmarks of advanced plaques. For imaging atherosclerotic plaques, the human antibody L19 (specific against ED-B) and a negative control antibody were labeled with radioiodine or infrared fluorophores and injected intravenously into atherosclerotic apolipoprotein E–null (ApoE−/−) or normal wild-type mice. Aortas isolated 4 hours, 24 hours, and 3 days after injection exhibited a selective and stable uptake of L19 when using radiographic or fluorescent imaging. L19 binding was confined to the plaques as assessed by fat staining. Comparisons between fat staining and autoradiographies 24 hours after 125I-labeled L19 revealed a significant correlation (r=0.89; P<0.0001). Minimal antibody uptake was observed in normal vessels from wild-type mice receiving the L19 antibody and in atherosclerotic vessels from ApoE−/− mice receiving the negative control antibody. Immunohistochemical studies revealed increased expression of ED-B not only in murine but also in human plaques, in which it was found predominantly around vasa vasorum and plaque matrix. In summary, we demonstrate selective targeting of atheromas in mice using the human antibody to the ED-B domain of fibronectin. Thus, our findings may set the stage for antibody-based molecular imaging of atherosclerotic plaques in the intact organism.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

18F-Choline Images Murine Atherosclerotic Plaques Ex Vivo

Christian M. Matter; Matthias T. Wyss; Patricia Stutzmann Meier; Nicolas Späth; Tobias von Lukowicz; Christine Lohmann; Bruno Weber; Ana Ramírez de Molina; Juan Carlos Lacal; Simon M. Ametamey; Gustav K. von Schulthess; Thomas F. Lüscher; Philipp A. Kaufmann; Alfred Buck

Objective—Current imaging modalities of atherosclerosis mainly visualize plaque morphology. Valuable insight into plaque biology was achieved by visualizing enhanced metabolism in plaque-derived macrophages using 18F-fluorodeoxyglucose (18F-FDG). Similarly, enhanced uptake of 18F-fluorocholine (18F-FCH) was associated with macrophages surrounding an abscess. As macrophages are important determinants of plaque vulnerability, we tested 18F-FCH for plaque imaging. Methods and Results—We injected 18F-FCH (n=5) or 18F-FDG (n=5) intravenously into atherosclerotic apolipoprotein E-deficient mice. En face measurements of aortae isolated 20 minutes after 18F-FCH injections demonstrated an excellent correlation between fat stainings and autoradiographies (r=0.842, P<0.0001), achieving a sensitivity of 84% to detect plaques by 18F-FCH. In contrast, radiotracer uptake 20 minutes after 18F-FDG injections correlated less with en face fat stainings (r=0.261, P<0.05), reaching a sensitivity of 64%. Histological analyses of cross-sections 20 minutes after coinjections of 18F-FCH and 14C-FDG (n=3) showed that 18F-FCH uptake correlated better with fat staining (r=0.740, P<0.0001) and macrophage-positive areas (r=0.740, P<0.0001) than 14C-FDG (fat: r=0.236, P=0.29 and CD68 staining: r=0.352, P=0.11), respectively. Conclusions—18F-FCH identifies murine plaques better than 18F-FDG using ex vivo imaging. Enhanced 18F-FCH uptake into macrophages may render this tracer a promising candidate for imaging plaques in patients.


BMC Genomics | 2008

Phylogenetic distribution and membrane topology of the LytR-CpsA-Psr protein family

Judith Hübscher; Lucas Lüthy; Brigitte Berger-Bächi; Patricia Stutzmann Meier

BackgroundThe bacterial cell wall is the target of many antibiotics and cell envelope constituents are critical to host-pathogen interactions. To combat resistance development and virulence, a detailed knowledge of the individual factors involved is essential. Members of the LytR-CpsA-Psr family of cell envelope-associated attenuators are relevant for β-lactam resistance, biofilm formation, and stress tolerance, and they are suggested to play a role in cell wall maintenance. However, their precise function is still unknown. This study addresses the occurrence as well as sequence-based characteristics of the LytR-CpsA-Psr proteins.ResultsA comprehensive list of LytR-CpsA-Psr proteins was established, and their phylogenetic distribution and clustering into subgroups was determined. LytR-CpsA-Psr proteins were present in all Gram-positive organisms, except for the cell wall-deficient Mollicutes and one strain of the Clostridiales. In contrast, the majority of Gram-negatives did not contain LytR-CpsA-Psr family members. Despite high sequence divergence, the LytR-CpsA-Psr domains of different subclusters shared a highly similar, predicted mixed a/β-structure, and conserved charged residues. PhoA fusion experiments, using MsrR of Staphylococcus aureus, confirmed membrane topology predictions and extracellular location of its LytR-CpsA-Psr domain.ConclusionThe LytR-CpsA-Psr domain is unique to bacteria. The presence of diverse subgroups within the LytR-CpsA-Psr family might indicate functional differences, and could explain variations in phenotypes of respective mutants reported. The identified conserved structural elements and amino acids are likely to be important for the function of the domain and will help to guide future studies of the LytR-CpsA-Psr proteins.


BMC Microbiology | 2011

Induction kinetics of the Staphylococcus aureus cell wall stress stimulon in response to different cell wall active antibiotics.

Vanina Dengler; Patricia Stutzmann Meier; Ronald Heusser; Brigitte Berger-Bächi; Nadine McCallum

BackgroundStaphylococcus aureus activates a protective cell wall stress stimulon (CWSS) in response to the inhibition of cell wall synthesis or cell envelope damage caused by several structurally and functionally different antibiotics. CWSS induction is coordinated by the VraSR two-component system, which senses an unknown signal triggered by diverse cell wall active agents.ResultsWe have constructed a highly sensitive luciferase reporter gene system, using the promoter of sas016 (S. aureus N315), which detects very subtle differences in expression as well as measuring > 4 log-fold changes in CWSS activity, to compare the concentration dependence of CWSS induction kinetics of antibiotics with different cell envelope targets. We compared the effects of subinhibitory up to suprainhibitory concentrations of fosfomycin, D-cycloserine, tunicamycin, bacitracin, flavomycin, vancomycin, teicoplanin, oxacillin, lysostaphin and daptomycin. Induction kinetics were both strongly antibiotic- and concentration-dependent. Most antibiotics triggered an immediate response with induction beginning within 10 min, except for tunicamycin, D-cycloserine and fosfomycin which showed lags of up to one generation before induction commenced. Induction characteristics, such as the rate of CWSS induction once initiated and maximal induction reached, were strongly antibiotic dependent. We observed a clear correlation between the inhibitory effects of specific antibiotic concentrations on growth and corresponding increases in CWSS induction kinetics. Inactivation of VraR increased susceptibility to the antibiotics tested from 2- to 16-fold, with the exceptions of oxacillin and D-cycloserine, where no differences were detected in the methicillin susceptible S. aureus strain background analysed. There was no apparent correlation between the induction capacity of the various antibiotics and the relative importance of the CWSS for the corresponding resistance phenotypes.ConclusionCWSS induction profiles were unique for each antibiotic. Differences observed in optimal induction conditions for specific antibiotics should be determined and taken into account when designing and interpreting CWSS induction studies.


Fems Microbiology Letters | 2011

LytR-CpsA-Psr proteins in Staphylococcus aureus display partial functional redundancy and the deletion of all three severely impairs septum placement and cell separation

Benjamin Over; Ronald Heusser; Nadine McCallum; Bettina Schulthess; Peter Kupferschmied; Jessica M. Gaiani; Costi D. Sifri; Brigitte Berger-Bächi; Patricia Stutzmann Meier

Staphylococcus aureus contains three members of the LytR-CpsA-Psr (LCP) family of membrane proteins: MsrR, SA0908 and SA2103. The characterization of single-, double- and triple-deletion mutants revealed distinct phenotypes for each of the three proteins. MsrR was involved in cell separation and septum formation and influenced β-lactam resistance; SA0908 protected cells from autolysis; and SA2103, although displaying no apparent phenotype by itself, enhanced the properties of msrR and sa0908 mutants when deleted. The deletion of sa0908 and sa2103 also further attenuated the virulence of msrR mutants in a nematode-killing assay. The severely defective growth phenotype of the triple mutant revealed that LytR-CpsA-Psr proteins are essential for optimal cell division in S. aureus. Growth could be rescued to varying degrees by any one of the three proteins, indicating some functional redundancy within members of this protein family. However, differing phenotypic characteristics of all single and double mutants and complemented triple mutants indicated that each protein played a distinct role(s) and contributed differently to phenotypes influencing cell separation, autolysis, cell surface properties and virulence.


Fems Microbiology Letters | 2009

MsrR contributes to cell surface characteristics and virulence in Staphylococcus aureus

Judith Hübscher; Nadine McCallum; Costi D. Sifri; Paul Majcherczyk; José M. Entenza; R. Heusser; Brigitte Berger-Bächi; Patricia Stutzmann Meier

MsrR, a factor contributing to methicillin resistance in Staphylococcus aureus, belongs to the LytR-CpsA-Psr family of cell envelope-associated proteins. Deletion of msrR increased cell size and aggregation, and altered envelope properties, leading to a temporary reduction in cell surface hydrophobicity, diminished colony-spreading ability, and an increased susceptibility to Congo red. The reduced phosphorus content of purified cell walls of the msrR mutant suggested a reduction in wall teichoic acids, which may explain some of the observed phenotypes. Microarray analysis of the msrR deletion mutant revealed only minor changes in the global transcriptome, suggesting that MsrR has structural rather than regulatory functions. Importantly, virulence of the msrR mutant was decreased in a nematode-killing assay as well as in rat experimental endocarditis. MsrR is therefore likely to play a role in cell envelope maintenance, cell separation, and pathogenicity of S. aureus.


Circulation | 2006

Role of Endogenous Fas (CD95/Apo-1) Ligand in Balloon-Induced Apoptosis, Inflammation, and Neointima Formation

Christian M. Matter; Christos E. Chadjichristos; Patricia Stutzmann Meier; Tobias von Lukowicz; Christine Lohmann; Pia K. Schuler; Dongming Zhang; Bernhard Odermatt; Eugen Hofmann; Thomas Brunner; Brenda R. Kwak; Thomas F. Lüscher

Background— Fas (CD95/Apo-1) ligand (FasL)–induced apoptosis in Fas-bearing cells is critically involved in modulating immune reactions and tissue repair. Apoptosis has also been described after mechanical vascular injury such as percutaneous coronary intervention. However, the relevance of cell death in this context of vascular repair remains unknown. Methods and Results— To determine whether FasL-induced apoptosis is causally related to neointimal lesion formation, we subjected FasL-deficient (generalized lymphoproliferative disorder [gld], C57BL/6J) and corresponding wild-type (WT) mice to carotid balloon distension injury, which induces marked endothelial denudation and medial cell death. FasL expression in WT mice was induced in injured vessels compared with untreated arteries (P<0.05; n=5). Conversely, absence of functional FasL in gld mice decreased medial and intimal apoptosis (terminal deoxynucleotidyltransferase–mediated dUTP nick end labeling [TUNEL] index) at 1 hour and 7 days after balloon injury (P<0.05; n=6). In addition, peritoneal macrophages isolated from gld mice showed no apoptosis and enhanced migration (P<0.05; n=4). In parallel, we observed increased balloon-induced macrophage infiltrations (anti-CD68) in injured arteries of FasL-deficient animals (P<0.05; n=6). Together with enhanced proliferation (bromodeoxyuridine index; P<0.05), these events resulted in a further increase in medial and neointimal cells (P<0.01; n=8) with thickened neointima in gld mice (intima/media ratio, ×3.8 of WT; P<0.01). Conclusions— Our data identify proapoptotic and antiinflammatory effects of endogenous FasL as important factors in the process of neointimal lesion formation after balloon injury. Moreover, they suggest that activation of FasL may decrease neointimal thickening after percutaneous coronary intervention.


Stroke | 2006

Increased Balloon-Induced Inflammation, Proliferation, and Neointima Formation in Apolipoprotein E (ApoE) Knockout Mice

Christian M. Matter; Liming Ma; Tobias von Lukowicz; Patricia Stutzmann Meier; Christine Lohmann; Dongming Zhang; Ülkan Kilic; Eugen Hofmann; Suk-Woo Ha; Martin Hersberger; Dirk M. Hermann; Thomas F. Lüscher

Background and Purpose— The pathophysiology of vascular lesions after balloon angioplasty remains poorly understood. A major limitation of most experimental studies in this regard is that injury was assessed in healthy arteries. Our aim was to study the effects of hypercholesterolemia in a mouse vascular injury model that mimics human balloon angioplasty. Methods— Carotid balloon distension was performed in wild-type (WT) mice on a normal diet (ND), in apolipoprotein E–deficient (ApoE−/−) mice on ND and in ApoE−/− mice fed a high cholesterol diet (CD). Results— Medial cell death (TUNEL) was elevated in all mice at 1 hour and 1 day after angioplasty without differences between the groups. We found enhanced intimal inflammation (%CD45-positive cells) and vascular cell adhesion molecule-1 expression at 7 days (P<0.05; n≥4) as well as increased proliferation rates (BrdU-index) in ApoE−/− CD at 7 and 28 days postinjury (P<0.05; n≥5). Four weeks after injury, these events led to enhanced neointima in ApoE−/− CD compared with WT ND mice (intima/media, P<0.001; n≥8). The amount of lesion formation paralleled the incremental increase in total plasma cholesterol in WT ND, ApoE−/− ND and ApoE−/− CD (P<0.01). Conclusions— Carotid balloon distension injury in ApoE−/− mice on CD induced enhanced inflammation and proliferation leading to increased neointima. Further applications of this microballoon catheter in genetically modified mice will provide opportunities to elucidate molecular mechanisms of vascular lesion formation in a model that reflects clinical balloon angioplasty. This know-how may pave the way to catheter-based interventions of human microvessels in the peripheral or cerebral circulation.


BMC Evolutionary Biology | 2013

Evolution of bone compactness in extant and extinct moles (Talpidae): exploring humeral microstructure in small fossorial mammals

Patricia Stutzmann Meier; Constanze Bickelmann; Torsten M. Scheyer; Daisuke Koyabu; Marcelo R. Sánchez-Villagra

BackgroundTalpids include forms with different degree of fossoriality, with major specializations in the humerus in the case of the fully fossorial moles. We studied the humeral microanatomy of eleven extant and eight extinct talpid taxa of different lifestyles and of two non-fossorial outgroups and examined the effects of size and phylogeny. We tested the hypothesis that bone microanatomy is different in highly derived humeri of fossorial taxa than in terrestrial and semi-aquatic ones, likely due to special mechanical strains to which they are exposed to during digging. This study is the first comprehensive examination of histological parameters in an ecologically diverse and small-sized mammalian clade.ResultsNo pattern of global bone compactness was found in the humeri of talpids that could be related to biomechanical specialization, phylogeny or size. The transition zone from the medullary cavity to the cortical compacta was larger and the ellipse ratio smaller in fossorial talpids than in non-fossorial talpids. No differences were detected between the two distantly related fossorial clades, Talpini and Scalopini.ConclusionsAt this small size, the overall morphology of the humerus plays a predominant role in absorbing the load, and microanatomical features such as an increase in bone compactness are less important, perhaps due to insufficient gravitational effects. The ellipse ratio of bone compactness shows relatively high intraspecific variation, and therefore predictions from this ratio based on single specimens are invalid.


Journal of the American College of Cardiology | 2004

1045-189 Plaque targeting in atherosclerotic mice using a small immunoprotein against an angiogenesis-associated fibronectin isoform

Pia K. Schuler; Christian M. Matter; Patricia Stutzmann Meier; Romeo Ricci; Dongming Zhang; Patrizia Alessi; Dario Neri; Thomas F. Lüscher

Vacular Diase, Hypension, nd Prention and IGF-1. RV mRNA levels were linearly related (p<0.01) with those of the LV, both for ACE (r=+0.88) and ET-1 (r=+0.71). The present study showed that LV dysfunction in a model of selective RV overload is accompanied by biventricular activation of regulatory (ACE and ET-1) systems, while counter-regulatory BNP is selectively activated in the RV. These findings might add to the understanding of the relative importance of load and autocrine/paracrine activation in the progression to heart failure.

Collaboration


Dive into the Patricia Stutzmann Meier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge