Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Martinez-Lage is active.

Publication


Featured researches published by Maria Martinez-Lage.


Nature Genetics | 2010

Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions

Vivianna M. Van Deerlin; Patrick Sleiman; Maria Martinez-Lage; Alice Chen-Plotkin; Li-San Wang; Neill R. Graff-Radford; Dennis W. Dickson; Rosa Rademakers; Bradley F. Boeve; Murray Grossman; Steven E. Arnold; David Mann; Stuart Pickering-Brown; Harro Seelaar; Peter Heutink; John C. van Swieten; Jill R. Murrell; Bernardino Ghetti; Salvatore Spina; Jordan Grafman; John R. Hodges; Maria Grazia Spillantini; Sid Gilman; Andrew P. Lieberman; Jeffrey Kaye; Randall L. Woltjer; Eileen H. Bigio; M.-Marsel Mesulam; Safa Al-Sarraj; Claire Troakes

Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 × 10−11; odds ratio, minor allele (C) 0.61, 95% CI 0.53–0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 × 10−4). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.


JAMA Neurology | 2008

Evidence of Multisystem Disorder in Whole-Brain Map of Pathological TDP-43 in Amyotrophic Lateral Sclerosis

Felix Geser; Nicholas J. Brandmeir; Linda K. Kwong; Maria Martinez-Lage; Lauren Elman; Leo McCluskey; Sharon X. Xie; Virginia M.-Y. Lee; John Q. Trojanowski

BACKGROUND Pathological 43-kDa transactivating responsive sequence DNA-binding protein (TDP-43) has been identified recently as the major disease protein in amyotrophic lateral sclerosis (ALS), and in frontotemporal lobar degeneration with ubiquitinated inclusions, with or without motor neuron disease, but the distribution of TDP-43 pathology in ALS may be more widespread than previously described. OBJECTIVE To determine the extent of TDP-43 pathology in the central nervous systems of patients with clinically confirmed and autopsy confirmed diagnoses of ALS. DESIGN Performance of an immunohistochemical whole-central nervous system scan for evidence of pathological TDP-43 in ALS patients. SETTING An academic medical center. PARTICIPANTS We included 31 patients with clinically and pathologically confirmed ALS and 8 control participants. MAIN OUTCOME MEASURES Immunohistochemistry and double-labeling immunofluorescence to assess the frequency and severity of TDP-43 pathology. RESULTS In addition to the stereotypical involvement of upper and lower motor neurons, neuronal and glial TDP-43 pathology was present in multiple areas of the central nervous systems of ALS patients, including in the nigro-striatal system, the neocortical and allocortical areas, and the cerebellum, but not in those of the controls. CONCLUSIONS These findings suggest that ALS does not selectively affect only the pyramidal motor system, but rather is a multisystem neurodegenerative TDP-43 proteinopathy.


JAMA Neurology | 2009

Clinical and Pathological Continuum of Multisystem TDP-43 Proteinopathies

Felix Geser; Maria Martinez-Lage; John Robinson; Kunihiro Uryu; Manuela Neumann; Nicholas J. Brandmeir; Sharon X. Xie; Linda K. Kwong; Lauren Elman; Leo McCluskey; Christopher M. Clark; Joe Malunda; Bruce L. Miller; Earl A. Zimmerman; Jiang Qian; Vivianna M. Van Deerlin; Murray Grossman; Virginia M.-Y. Lee; John Q. Trojanowski

OBJECTIVE To determine the extent of transactivation response DNA-binding protein with a molecular weight of 43 kDa (TDP-43) pathology in the central nervous system of patients with clinically and autopsy-confirmed diagnoses of frontotemporal lobar degeneration with and without motor neuron disease and amyotrophic lateral sclerosis with and without cognitive impairment. DESIGN Performance of immunohistochemical whole-central nervous system scans for evidence of pathological TDP-43 and retrospective clinical medical record review. SETTING An academic medical center. PARTICIPANTS We included 64 patients with clinically and pathologically confirmed frontotemporal lobar degeneration with ubiquitinated inclusions with or without motor neuron disease and amyotrophic lateral sclerosis with or without cognitive impairment. MAIN OUTCOME MEASURE Neuronal and glial TDP-43 pathology. RESULTS We found evidence of neuronal and glial TDP-43 pathology in all disease groups throughout the neuraxis, albeit with variations in the frequency, morphology, and distribution of TDP-43 lesions. Moreover, the major clinical manifestations (eg, cognitive impairments, motor neuron signs, extrapyramidal symptoms, neuropsychiatric features) were reflected by the predominant distribution and burden of TDP-43 pathology. CONCLUSION These findings strongly suggest that amyotrophic lateral sclerosis, frontotemporal lobar degeneration with amyotrophic lateral sclerosis or motor neuron disease, and frontotemporal lobar degeneration with ubiquitinated inclusions are different manifestations of a multiple-system TDP-43 proteinopathy linked to similar mechanisms of neurodegeneration.


Nature Genetics | 2014

Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas

Priscilla K. Brastianos; Amaro Taylor-Weiner; Peter Manley; Robert T. Jones; Dora Dias-Santagata; Aaron R. Thorner; Michael S. Lawrence; Fausto J. Rodriguez; Lindsay A. Bernardo; Laura Schubert; Ashwini Sunkavalli; Nick Shillingford; Monica L. Calicchio; Hart G.W. Lidov; Hala Taha; Maria Martinez-Lage; Mariarita Santi; Phillip B. Storm; John Y. K. Lee; James N. Palmer; Nithin D. Adappa; R. Michael Scott; Ian F. Dunn; Edward R. Laws; Chip Stewart; Keith L. Ligon; Mai P. Hoang; Paul Van Hummelen; William C. Hahn; David N. Louis

Craniopharyngiomas are epithelial tumors that typically arise in the suprasellar region of the brain. Patients experience substantial clinical sequelae from both extension of the tumors and therapeutic interventions that damage the optic chiasm, the pituitary stalk and the hypothalamic area. Using whole-exome sequencing, we identified mutations in CTNNB1 (β-catenin) in nearly all adamantinomatous craniopharyngiomas examined (11/12, 92%) and recurrent mutations in BRAF (resulting in p.Val600Glu) in all papillary craniopharyngiomas (3/3, 100%). Targeted genotyping revealed BRAF p.Val600Glu in 95% of papillary craniopharyngiomas (36 of 39 tumors) and mutation of CTNNB1 in 96% of adamantinomatous craniopharyngiomas (51 of 53 tumors). The CTNNB1 and BRAF mutations were clonal in each tumor subtype, and we detected no other recurrent mutations or genomic aberrations in either subtype. Adamantinomatous and papillary craniopharyngiomas harbor mutations that are mutually exclusive and clonal. These findings have important implications for the diagnosis and treatment of these neoplasms.


Journal of Neurology | 2009

Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases

Felix Geser; Maria Martinez-Lage; Linda K. Kwong; Virginia M.-Y. Lee; John Q. Trojanowski

Ever since the significance of pathological 43-kDa transactivating responsive sequence DNA-binding protein (TDP-43) for human disease has been recognized in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin positive inclusions (FTLD-U), a number of publications have emerged reporting on this pathology in a variety of neurodegenerative diseases. Given the heterogeneous and, in part, conflicting nature of the recent findings, we here review pathological TDP-43 and its relationship to human disease with a special focus on ALS and FTLD-U. To this end, we propose a classification scheme in which pathological TDP-43 is the major disease defining pathology in one group, or is present in addition to other neurodegenerative hallmark pathologies in a second category. We conclude that the TDP-43 proteinopathies represent a novel class of neurodegenerative disorders akin to α-synucleinopathies and tauopathies, with the concept of ALS and FTLD-U to be widened to a broad clinico-pathological multisystem disease, i.e., TDP-43 proteinopathy.


Science Translational Medicine | 2017

A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma

Donald M. O’Rourke; MacLean P. Nasrallah; Arati Desai; J. Joseph Melenhorst; Keith Mansfield; Jennifer J.D. Morrissette; Maria Martinez-Lage; Steven Brem; Eileen Maloney; Angela Shen; Randi Isaacs; Suyash Mohan; Gabriela Plesa; Simon F. Lacey; Jean-Marc Navenot; Zhaohui Zheng; Bruce L. Levine; Hideho Okada; Carl H. June; Jennifer Brogdon; Marcela V. Maus

A trial of autologous T cells redirected to a specific mutation in glioblastoma patients illustrates mechanisms of resistance. Speeding toward CAR T cell therapy for glioblastoma Chimeric antigen receptor (CAR) T cells have been successfully implemented for treating leukemia and are now being investigated for solid tumors. O’Rourke et al. conducted a phase 1 safety study of autologous CAR T cells targeted to EGFR variant III in glioblastoma patients. Treatment seemed to be well tolerated, which is critical because other CAR T cell products have been implicated in devastating central nervous system complications. Of the 10 patients enrolled, 7 had surgical intervention, allowing for some analysis of the tumors and T cells in patients’ brains. The results of this trial indicate that CAR T cell therapy is a viable option for treating glioblastoma. We conducted a first-in-human study of intravenous delivery of a single dose of autologous T cells redirected to the epidermal growth factor receptor variant III (EGFRvIII) mutation by a chimeric antigen receptor (CAR). We report our findings on the first 10 recurrent glioblastoma (GBM) patients treated. We found that manufacturing and infusion of CAR-modified T cell (CART)–EGFRvIII cells are feasible and safe, without evidence of off-tumor toxicity or cytokine release syndrome. One patient has had residual stable disease for over 18 months of follow-up. All patients demonstrated detectable transient expansion of CART-EGFRvIII cells in peripheral blood. Seven patients had post–CART-EGFRvIII surgical intervention, which allowed for tissue-specific analysis of CART-EGFRvIII trafficking to the tumor, phenotyping of tumor-infiltrating T cells and the tumor microenvironment in situ, and analysis of post-therapy EGFRvIII target antigen expression. Imaging findings after CART immunotherapy were complex to interpret, further reinforcing the need for pathologic sampling in infused patients. We found trafficking of CART-EGFRvIII cells to regions of active GBM, with antigen decrease in five of these seven patients. In situ evaluation of the tumor environment demonstrated increased and robust expression of inhibitory molecules and infiltration by regulatory T cells after CART-EGFRvIII infusion, compared to pre–CART-EGFRvIII infusion tumor specimens. Our initial experience with CAR T cells in recurrent GBM suggests that although intravenous infusion results in on-target activity in the brain, overcoming the adaptive changes in the local tumor microenvironment and addressing the antigen heterogeneity may improve the efficacy of EGFRvIII-directed strategies in GBM.


JAMA Neurology | 2011

Genetic and Clinical Features of Progranulin-Associated Frontotemporal Lobar Degeneration

Alice Chen-Plotkin; Maria Martinez-Lage; Patrick Sleiman; William T. Hu; Robert Greene; Elisabeth McCarty Wood; Shaoxu Bing; Murray Grossman; Gerard D. Schellenberg; Kimmo J. Hatanpaa; Myron F. Weiner; Charles L. White; William S. Brooks; Glenda M. Halliday; Jillian J. Kril; Marla Gearing; Thomas G. Beach; Neill R. Graff-Radford; Dennis W. Dickson; Rosa Rademakers; Bradley F. Boeve; Stuart Pickering-Brown; Julie S. Snowden; John C. van Swieten; Peter Heutink; Harro Seelaar; Jill R. Murrell; Bernardino Ghetti; Salvatore Spina; Jordan Grafman

OBJECTIVE To assess the relative frequency of unique mutations and their associated characteristics in 97 individuals with mutations in progranulin (GRN), an important cause of frontotemporal lobar degeneration (FTLD). PARTICIPANTS AND DESIGN A 46-site International Frontotemporal Lobar Degeneration Collaboration was formed to collect cases of FTLD with TAR DNA-binding protein of 43-kDa (TDP-43)-positive inclusions (FTLD-TDP). We identified 97 individuals with FTLD-TDP with pathogenic GRN mutations (GRN+ FTLD-TDP), assessed their genetic and clinical characteristics, and compared them with 453 patients with FTLD-TDP in which GRN mutations were excluded (GRN- FTLD-TDP). No patients were known to be related. Neuropathologic characteristics were confirmed as FTLD-TDP in 79 of the 97 GRN+ FTLD-TDP cases and all of the GRN- FTLD-TDP cases. RESULTS Age at onset of FTLD was younger in patients with GRN+ FTLD-TDP vs GRN- FTLD-TDP (median, 58.0 vs 61.0 years; P < .001), as was age at death (median, 65.5 vs 69.0 years; P < .001). Concomitant motor neuron disease was much less common in GRN+ FTLD-TDP vs GRN- FTLD-TDP (5.4% vs 26.3%; P < .001). Fifty different GRN mutations were observed, including 2 novel mutations: c.139delG (p.D47TfsX7) and c.378C>A (p.C126X). The 2 most common GRN mutations were c.1477C>T (p.R493X, found in 18 patients, representing 18.6% of GRN cases) and c.26C>A (p.A9D, found in 6 patients, representing 6.2% of cases). Patients with the c.1477C>T mutation shared a haplotype on chromosome 17; clinically, they resembled patients with other GRN mutations. Patients with the c.26C>A mutation appeared to have a younger age at onset of FTLD and at death and more parkinsonian features than those with other GRN mutations. CONCLUSION GRN+ FTLD-TDP differs in key features from GRN- FTLD-TDP.


Modern Pathology | 2013

The alternative lengthening of telomere phenotype is significantly associated with loss of ATRX expression in high-grade pediatric and adult astrocytomas: a multi-institutional study of 214 astrocytomas

Malak Abedalthagafi; Joanna J. Phillips; Grace E. Kim; Sabine Mueller; Daphne A Haas-Kogen; Roxanne Marshall; Sidney Croul; Mariarita Santi; Jing Cheng; Shengmei Zhou; Lisa M. Sullivan; Maria Martinez-Lage; Alexander R. Judkins; Arie Perry

Loss-of-function of alpha thalassemia/mental retardation syndrome X-linked (ATRX) protein leads to a phenotype called alternative lengthening of telomeres (ALT) in some tumors. High-grade astrocytomas comprise a heterogeneous group of central nervous system tumors. We examined a large cohort of adult (91) and pediatric (n=88) high-grade astrocytomas as well as lower grade forms (n=35) for immunohistochemical loss of ATRX protein expression and the presence of ALT using telomere-specific fluorescence in situ hybridization, with further correlation to other known genetic alterations. We found that in pediatric high-grade astrocytomas, 29.6% of tumors were positive for ALT and 24.5% were immunonegative for the ATRX protein, these two alterations being highly associated with one another (P<0.0001). In adult high-grade astrocytomas, 26.4% of tumors were similarly positive for ALT, including 80% of ATRX protein immunonegative cases (P<0.0001). Similar frequencies were found in 11 adult low-grade astrocytomas, whereas all 24 pilocytic astrocytomas were negative for ALT. We did not find any significant correlations between isocitrate dehydrogenase status and either ALT positivity or ATRX protein expression in our adult high-grade astrocytomas. In both cohorts, however, the ALT positive high-grade astrocytomas showed more frequent amplification of the platelet-derived growth factor receptor alpha gene (PDGFRA; 45% and 50%, respectively) than the ALT negative counterparts (18% and 26%; P=0.03 for each). In summary, our data show that the ALT and ATRX protein alterations are common in both pediatric and adult high-grade astrocytomas, often with associated PDGFRA gene amplification.


Neuro-oncology | 2016

Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques.

Luke Macyszyn; Hamed Akbari; Jared M. Pisapia; Xiao Da; Mark A. Attiah; Vadim Pigrish; Yingtao Bi; Sharmistha Pal; Ramana V. Davuluri; Laura Roccograndi; Nadia Dahmane; Maria Martinez-Lage; George Biros; Ronald L. Wolf; Michel Bilello; Donald M. O'Rourke; Christos Davatzikos

BACKGROUND MRI characteristics of brain gliomas have been used to predict clinical outcome and molecular tumor characteristics. However, previously reported imaging biomarkers have not been sufficiently accurate or reproducible to enter routine clinical practice and often rely on relatively simple MRI measures. The current study leverages advanced image analysis and machine learning algorithms to identify complex and reproducible imaging patterns predictive of overall survival and molecular subtype in glioblastoma (GB). METHODS One hundred five patients with GB were first used to extract approximately 60 diverse features from preoperative multiparametric MRIs. These imaging features were used by a machine learning algorithm to derive imaging predictors of patient survival and molecular subtype. Cross-validation ensured generalizability of these predictors to new patients. Subsequently, the predictors were evaluated in a prospective cohort of 29 new patients. RESULTS Survival curves yielded a hazard ratio of 10.64 for predicted long versus short survivors. The overall, 3-way (long/medium/short survival) accuracy in the prospective cohort approached 80%. Classification of patients into the 4 molecular subtypes of GB achieved 76% accuracy. CONCLUSIONS By employing machine learning techniques, we were able to demonstrate that imaging patterns are highly predictive of patient survival. Additionally, we found that GB subtypes have distinctive imaging phenotypes. These results reveal that when imaging markers related to infiltration, cell density, microvascularity, and blood-brain barrier compromise are integrated via advanced pattern analysis methods, they form very accurate predictive biomarkers. These predictive markers used solely preoperative images, hence they can significantly augment diagnosis and treatment of GB patients.


Brain Pathology | 2013

PDGFRA amplification is common in pediatric and adult high-grade astrocytomas and identifies a poor prognostic group in IDH1 mutant glioblastoma

Joanna J. Phillips; Derick Aranda; David W. Ellison; Alexander R. Judkins; Sidney Croul; Daniel J. Brat; Keith L. Ligon; Craig Horbinski; Sriram Venneti; Gelareh Zadeh; Mariarita Santi; Shengmei Zhou; Christina L. Appin; Stefano Sioletic; Lisa M. Sullivan; Maria Martinez-Lage; Aaron E. Robinson; William H. Yong; Timothy F. Cloughesy; Albert Lai; Heidi S. Phillips; Roxanne Marshall; Sabine Mueller; Daphne A. Haas-Kogan; Annette M. Molinaro; Arie Perry

High‐grade astrocytomas (HGAs), corresponding to World Health Organization grades III (anaplastic astrocytoma) and IV (glioblastoma; GBM), are biologically aggressive, and their molecular classification is increasingly relevant to clinical management. PDGFRA amplification is common in HGAs, although its prognostic significance remains unclear. Using fluorescence in situ hybridization (FISH), the most sensitive technique for detecting PDGFRA copy number gains, we determined PDGFRA amplification status in 123 pediatric and 263 adult HGAs. A range of PDGFRA FISH patterns were identified and cases were scored as non‐amplified (normal and polysomy) or amplified (low‐level and high‐level). PDGFRA amplification was frequent in pediatric (29.3%) and adult (20.9%) tumors. Amplification was not prognostic in pediatric HGAs. In adult tumors diagnosed initially as GBM, the presence of combined PDGFRA amplification and isocitrate dehydrogenase 1 (IDH1)R132H mutation was a significant independent prognostic factor (P = 0.01). In HGAs, PDGFRA amplification is common and can manifest as high‐level and focal or low‐level amplifications. Our data indicate that the latter is more prevalent than previously reported with copy number averaging techniques. To our knowledge, this is the largest survey of PDGFRA status in adult and pediatric HGAs and suggests PDGFRA amplification increases with grade and is associated with a less favorable prognosis in IDH1 mutant de novo GBMs.

Collaboration


Dive into the Maria Martinez-Lage's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arati Desai

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Y. K. Lee

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Steven Brem

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamed Akbari

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Leo McCluskey

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge