Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Mattheijssens is active.

Publication


Featured researches published by Maria Mattheijssens.


Nature | 2006

Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21.

Marc Cruts; Ilse Gijselinck; Julie van der Zee; Sebastiaan Engelborghs; Hans Wils; Daniel Pirici; Rosa Rademakers; Rik Vandenberghe; Bart Dermaut; Jean-Jacques Martin; Cornelia van Duijn; Karin Peeters; Raphael Sciot; Patrick Santens; Tim De Pooter; Maria Mattheijssens; Marleen Van den Broeck; Ivy Cuijt; Krist'l Vennekens; Peter Paul De Deyn; Samir Kumar-Singh; Christine Van Broeckhoven

Frontotemporal dementia (FTD) with ubiquitin-immunoreactive neuronal inclusions (both cytoplasmic and nuclear) of unknown nature has been linked to a chromosome 17q21 region (FTDU-17) containing MAPT (microtubule-associated protein tau). FTDU-17 patients have consistently been shown to lack a tau-immunoreactive pathology, a feature characteristic of FTD with parkinsonism linked to mutations in MAPT (FTDP-17). Furthermore, in FTDU-17 patients, mutations in MAPT and genomic rearrangements in the MAPT region have been excluded by both genomic sequencing and fluorescence in situ hybridization on mechanically stretched chromosomes. Here we demonstrate that FTDU-17 is caused by mutations in the gene coding for progranulin (PGRN), a growth factor involved in multiple physiological and pathological processes including tumorigenesis. Besides the production of truncated PGRN proteins due to premature stop codons, we identified a mutation within the splice donor site of intron 0 (IVS0 + 5G > C), indicating loss of the mutant transcript by nuclear degradation. The finding was made within an extensively documented Belgian FTDU-17 founder family. Transcript and protein analyses confirmed the absence of the mutant allele and a reduction in the expression of PGRN. We also identified a mutation (c.3G > A) in the Met1 translation initiation codon, indicating loss of PGRN due to lack of translation of the mutant allele. Our data provide evidence that PGRN haploinsufficiency leads to neurodegeneration because of reduced PGRN-mediated neuronal survival. Furthermore, in a Belgian series of familial FTD patients, PGRN mutations were 3.5 times more frequent than mutations in MAPT, underscoring a principal involvement of PGRN in FTD pathogenesis.


Lancet Neurology | 2012

A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study

Ilse Gijselinck; Tim Van Langenhove; Julie van der Zee; Kristel Sleegers; Stéphanie Philtjens; Gernot Kleinberger; Jonathan Janssens; Karolien Bettens; Caroline Van Cauwenberghe; Sandra Pereson; Sebastiaan Engelborghs; Anne Sieben; Rik Vandenberghe; Patrick Santens; Jan De Bleecker; Githa Maes; Veerle Bäumer; Lubina Dillen; Geert Joris; Ivy Cuijt; Ellen Corsmit; Ellen Elinck; Jasper Van Dongen; Steven Vermeulen; Marleen Van den Broeck; Carolien Vaerenberg; Maria Mattheijssens; Karin Peeters; Wim Robberecht; Patrick Cras

BACKGROUND Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are extremes of a clinically, pathologically, and genetically overlapping disease spectrum. A locus on chromosome 9p21 has been associated with both disorders, and we aimed to identify the causal gene within this region. METHODS We studied 305 patients with FTLD, 137 with ALS, and 23 with concomitant FTLD and ALS (FTLD-ALS) and 856 controls from Flanders (Belgium); patients were identified from a hospital-based cohort and were negative for mutations in known FTLD and ALS genes. We also examined the family of one patient with FTLD-ALS previously linked to 9p21 (family DR14). We analysed 130 kbp at 9p21 in association and segregation studies, genomic sequencing, repeat genotyping, and expression studies to identify the causal mutation. We compared genotype-phenotype correlations between mutation carriers and non-carriers. FINDINGS In the patient-control cohort, the single-nucleotide polymorphism rs28140707 within the 130 kbp region of 9p21 was associated with disease (odds ratio [OR] 2·6, 95% CI 1·5-4·7; p=0·001). A GGGGCC repeat expansion in C9orf72 completely co-segregated with disease in family DR14. The association of rs28140707 with disease in the patient-control cohort was abolished when we excluded GGGGCC repeat expansion carriers. In patients with familial disease, six (86%) of seven with FTLD-ALS, seven (47%) of 15 with ALS, and 12 (16%) of 75 with FTLD had the repeat expansion. In patients without known familial disease, one (6%) of 16 with FTLD-ALS, six (5%) of 122 with ALS, and nine (4%) of 230 with FTLD had the repeat expansion. Mutation carriers primarily presented with classic ALS (10 of 11 individuals) or behavioural variant FTLD (14 of 15 individuals). Mean age at onset of FTLD was 55·3 years (SD 8·4) in 21 mutation carriers and 63·2 years (9·6) in 284 non-carriers (p=0·001); mean age at onset of ALS was 54·5 years (9·9) in 13 carriers and 60·4 years (11·4) in 124 non-carriers. Postmortem neuropathological analysis of the brains of three mutation carriers with FTLD showed a notably low TDP-43 load. In brain at postmortem, C9orf72 expression was reduced by nearly 50% in two carriers compared with nine controls (p=0·034). In familial patients, 14% of FTLD-ALS, 50% of ALS, and 62% of FTLD was not accounted for by known disease genes. INTERPRETATION We identified a pathogenic GGGGCC repeat expansion in C9orf72 on chromosome 9p21, as recently also reported in two other studies. The GGGGCC repeat expansion is highly penetrant, explaining all of the contribution of chromosome 9p21 to FTLD and ALS in the Flanders-Belgian cohort. Decreased expression of C9orf72 in brain suggests haploinsufficiency as an underlying disease mechanism. Unidentified genes probably also contribute to the FTLD-ALS disease spectrum. FUNDING Full funding sources listed at end of paper (see Acknowledgments).


Annals of Neurology | 2009

Serum biomarker for progranulin‐associated frontotemporal lobar degeneration

Kristel Sleegers; Nathalie Brouwers; Philip Van Damme; Sebastiaan Engelborghs; Ilse Gijselinck; Julie van der Zee; Karin Peeters; Maria Mattheijssens; Marc Cruts; Rik Vandenberghe; Peter Paul De Deyn; Wim Robberecht; Christine Van Broeckhoven

Mutations that lead to a loss of progranulin (PGRN) explain a considerable portion of the occurrence of frontotemporal lobar degeneration. We tested a biomarker allowing rapid detection of a loss of PGRN.


Neurology | 2010

Genetic contribution of FUS to frontotemporal lobar degeneration

T Van Langenhove; J. van der Zee; K Sleegers; S. Engelborghs; Rik Vandenberghe; Ilse Gijselinck; M Van den Broeck; Maria Mattheijssens; Kristien Peeters; P.P. De Deyn; Marc Cruts; C. Van Broeckhoven

Background: Recently, the FUS gene was identified as a new causal gene for amyotrophic lateral sclerosis (ALS) in ∼4% of patients with familial ALS. Since ALS and frontotemporal lobar degeneration (FTLD) are part of a clinical, pathologic, and genetic disease spectrum, we investigated a potential role of FUS in FTLD. Methods: We performed mutational analysis of FUS in 122 patients with FTLD and 15 patients with FTLD-ALS, as well as in 47 patients with ALS. Mutation screening was performed by sequencing of PCR amplicons of the 15 FUS exons. Results: We identified 1 patient with FTLD with a novel missense mutation, M254V, that was absent in 638 control individuals. In silico analysis predicted this amino acid substitution to be pathogenic. The patient did not have a proven family history of neurodegenerative brain disease. Further, we observed the known R521H mutation in 1 patient with ALS. No FUS mutations were detected in the patients with FTLD-ALS. While insertions/deletions of 2 glycines (G) were suggested to be pathogenic in the initial FUS reports, we observed an identical GG-deletion in 2 healthy individuals and similar G-insertions/deletions in 4 other control individuals, suggesting that G-insertions/deletions within this G-rich region may be tolerated. Conclusions: In a first analysis of FUS in patients with frontotemporal lobar degeneration (FTLD), we identified a novel FUS missense mutation, M254V, in 1 patient with pure FTLD. At this point, the biologic relevance of this mutation remains elusive. Screening of additional FTLD patient cohorts will be needed to further elucidate the contribution of FUS mutations to FTLD pathogenesis.


Neurology | 2008

Genetic variability in progranulin contributes to risk for clinically diagnosed Alzheimer disease

Nicolas Brouwers; K Sleegers; S. Engelborghs; Sebastian Maurer-Stroh; Ilse Gijselinck; J. van der Zee; Barbara A. Pickut; M Van den Broeck; Maria Mattheijssens; Kristien Peeters; Joost Schymkowitz; Frederic Rousseau; J. J. Martin; Marc Cruts; P.P. De Deyn; C. Van Broeckhoven

Objective: Loss-of-function mutations in the progranulin gene (PGRN) were identified in frontotemporal lobar degeneration (FTLD) with ubiquitin-immunoreactive neuronal inclusions (FTLD-U). We assessed whether PGRN also contributes to genetic risk for Alzheimer disease (AD) in an extended Belgian AD patient group (n = 779, onset age 74.7 ± 8.7 years). Methods: A mutation analysis of the PGRN coding region was performed. The effect of missense mutations was assessed using in silico predictions and protein modeling. Risk effects of common genetic variants were estimated by logistic regression analysis and gene-based haplotype association analysis. Results: We observed seven missense mutations in eight patients (1.3%). Convincing pathogenic evidence was obtained for two missense mutations, p.Cys139Arg and p.Pro451Leu, affecting PGRN protein folding and leading to loss of PGRN by degradation of the misfolded protein. In addition, we showed that PGRN haplotypes were associated with increased risk for AD. Conclusions: Our data support a role for PGRN in patients with clinically diagnosed Alzheimer disease (AD). Further, we hypothesize that at least some PGRN missense mutations might lead to loss of functional protein. Whether the underlying pathology in our cases proves to be AD, frontotemporal lobar degeneration, or a combination of the two must await further investigations.


Molecular Psychiatry | 2012

Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites

Nathalie Brouwers; C Van Cauwenberghe; S. Engelborghs; J-C Lambert; Karolien Bettens; N Le Bastard; Florence Pasquier; A Gil Montoya; Kristien Peeters; Maria Mattheijssens; Rik Vandenberghe; P.P. De Deyn; Marc Cruts; Philippe Amouyel; Kristel Sleegers; C. Van Broeckhoven

Two multicentre genome-wide association (GWA) studies provided substantial evidence, implicating the complement receptor 1 gene (CR1) in Alzheimer disease (AD) genetic etiology. CR1 encodes a large transmembrane receptor with a crucial role in the immune complement cascade. We performed a genetic follow-up of the GWA CR1 association in a Flanders–Belgian cohort (n=1883), and investigated the effect of single-nucleotide polymorphisms (SNPs) located in the CR1 locus on AD risk and cerebrospinal fluid (CSF) biomarker levels. We obtained significant association (Padj<0.03; odds ratio (OR)=1.24 (95% confidence interval (CI): 1.02–1.51)) for one CR1 risk haplotype, and haplotype association was strongest in individuals carrying apolipoprotein E (APOE) ɛ4 alleles (Padj<0.006; OR=1.50 (95% CI: 1.08–2.09)). Also, four SNPs correlated with increased CSF amyloid Aβ1−42 levels, suggesting a role for the CR1 protein in Aβ metabolism. Moreover, we quantified a low-copy repeat (LCR)-associated copy number variation (CNV) in CR1, producing different CR1 isoforms, CR1-F and CR1-S, and obtained significant association in carriers of CR1-S. We replicated the CR1 CNV association finding in a French cohort (n=2003) and calculated in the combined cohorts, an OR of 1.32; 95% CI: 1.10–1.59 (P=0.0025). Our data showed that the common AD risk association may well be explained by the presence of CR1-S increasing the number of C3b/C4b and cofactor activity sites and AD risk with 30% in CR1-S carriers. How precisely the different functional role of CR1-S in the immune complement cascade contributes to AD pathogenesis will need additional functional studies.


Neurobiology of Aging | 2014

Investigating the role of rare heterozygous TREM2 variants in Alzheimer's disease and frontotemporal dementia

Elise Cuyvers; Karolien Bettens; Stéphanie Philtjens; Tim Van Langenhove; Ilse Gijselinck; Julie van der Zee; Sebastiaan Engelborghs; Mathieu Vandenbulcke; Jasper Van Dongen; Nathalie Geerts; Githa Maes; Maria Mattheijssens; Karin Peeters; Patrick Cras; Rik Vandenberghe; Peter Paul De Deyn; Christine Van Broeckhoven; Marc Cruts; Kristel Sleegers

Homozygous mutations in exon 2 of TREM2, a gene involved in Nasu-Hakola disease, can cause frontotemporal dementia (FTD). Moreover, a rare TREM2 exon 2 variant (p.R47H) was reported to increase the risk of Alzheimers disease (AD) with an odds ratio as strong as that for APOEε4. We systematically screened the TREM2 coding region within a Belgian study on neurodegenerative brain diseases (1216 AD patients, 357 FTD patients, and 1094 controls). We observed an enrichment of rare variants across TREM2 in both AD and FTD patients compared to controls, most notably in the extracellular IgV-set domain (relative risk = 3.84 [95% confidence interval = 1.29-11.44]; p = 0.009 for AD; relative risk = 6.19 [95% confidence interval = 1.86-20.61]; p = 0.0007 for FTD). None of the rare variants individually reached significant association, but the frequency of p.R47H was increased ~ 3-fold in both AD and FTD patients compared to controls, in line with previous reports. Meta-analysis including 11 previously screened AD cohorts confirmed the association of p.R47H with AD (p = 2.93×10(-17)). Our data corroborate and extend previous findings to include an increased frequency of rare heterozygous TREM2 variations in AD and FTD, and show that TREM2 variants may play a role in neurodegenerative diseases in general.


Brain | 2011

TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort

Julie van der Zee; Tim Van Langenhove; Gernot Kleinberger; Kristel Sleegers; Sebastiaan Engelborghs; Rik Vandenberghe; Patrick Santens; Marleen Van den Broeck; Geert Joris; Jolien Brys; Maria Mattheijssens; Karin Peeters; Patrick Cras; Peter Paul De Deyn; Marc Cruts; Christine Van Broeckhoven

In a genome-wide association study of frontotemporal lobar degeneration with pathological inclusions of TAR DNA-binding protein, significant association was obtained with three single nucleotide polymorphisms at 7p21.3, in a region encompassing the gene TMEM106B. This study also suggested a potential modifying effect of TMEM106B on disease since the association was strongest in progranulin mutation carriers. Further, the risk effect seemed to correlate with increased TMEM106B expression in patients. In the present study, we sought to replicate these three findings using an independent Flanders–Belgian cohort of primarily clinically diagnosed patients with frontotemporal lobar degeneration (n = 288). We were able to confirm the association with TMEM106B with a P-value of 0.008 for rs1990622, the top marker from the genome-wide association study [odds ratio 0.75 (95% confidence interval 0.61–0.93)]. Further, high-density single nucleotide polymorphism mapping suggested that the association was solely driven by the gene TMEM106B. Homozygous carriers of the TMEM106B protective alleles had a 50% reduced risk of developing frontotemporal lobar degeneration. However, we were unable to detect a modifying effect of the TMEM106B single nucleotide polymorphisms on onset age in progranulin mutation carriers belonging to an extended, clinical and pathological well-documented founder family segregating a progranulin null mutation. Also, we could not observe significant differences in messenger RNA expression between patients and control individuals in lymphoblast cell lines and in brain frontal cortex. In conclusion, we replicated the genetic TMEM106B association in a primarily clinically diagnosed cohort of patients with frontotemporal lobar degeneration from Flanders–Belgium. Additional studies are needed to unravel the molecular role of TMEM106B in disease onset and pathogenesis.


JAMA Neurology | 2013

Distinct Clinical Characteristics of C9orf72 Expansion Carriers Compared With GRN, MAPT, and Nonmutation Carriers in a Flanders-Belgian FTLD Cohort

Tim Van Langenhove; Julie van der Zee; Ilse Gijselinck; Sebastiaan Engelborghs; Rik Vandenberghe; Mathieu Vandenbulcke; Jan De Bleecker; Anne Sieben; Jan Versijpt; Adrian Ivanoiu; Olivier Deryck; Lubina Dillen; Stéphanie Philtjens; Githa Maes; Veerle Bäumer; Marleen Van den Broeck; Maria Mattheijssens; Karin Peeters; Jean-Jacques Martin; Alex Michotte; Patrick Santens; Patrick Cras; Peter Paul De Deyn; Marc Cruts; Christine Van Broeckhoven

OBJECTIVE To characterize patients with frontotemporal lobar degeneration (FTLD) with a repeat expansion mutation in the gene C9orf72, and to determine whether there are differences in the clinical presentation compared with FTLD carriers of a mutation in GRN or MAPT or with patients with FTLD without mutation. DESIGN Patient series. SETTING Dementia clinics in Flanders, Belgium. PATIENTS Two hundred seventy-five genetically and phenotypically thoroughly characterized patients with FTLD. MAIN OUTCOME MEASURES Clinical and demographic characteristics of 26 C9orf72 expansion carriers compared with patients with a GRN or MAPT mutation, as well as patients with familial and sporadic FTLD without mutation. RESULTS C9orf72 expansion carriers developed FTLD at an early age (average, 55.3 years; range, 42-69 years), significantly earlier than in GRN mutation carriers or patients with FTLD without mutation. Mean survival (6.2 years; range, 1.5-17.0 years) was similar to other patient groups. Most developed behavioral variant frontotemporal dementia (85%), with disinhibited behavior as the prominent feature. Concomitant amyotrophic lateral sclerosis is a strong distinguishing feature for C9orf72 -associated FTLD. However, in most patients (73%), amyotrophic lateral sclerosis symptoms were absent. Compared with C9orf72 expansion carriers, nonfluent aphasia and limb apraxia were significantly more common in GRN mutation carriers. CONCLUSIONS C9orf72 -associated FTLD most often presents with early-onset behavioral variant frontotemporal dementia with disinhibition as the prominent feature, with or without amyotrophic lateral sclerosis. Based on the observed genotype-phenotype correlations between the different FTLD syndromes and different genetic causes, we propose a decision tree to guide clinical genetic testing in patients clinically diagnosed as having FTLD.


Neurology | 2009

Clinical heterogeneity in 3 unrelated families linked to VCP p.Arg159His

J. van der Zee; Daniel Pirici; T Van Langenhove; S. Engelborghs; Rik Vandenberghe; M Hoffmann; G Pusswald; M Van den Broeck; Kristien Peeters; Maria Mattheijssens; J. J. Martin; P.P. De Deyn; Marc Cruts; D Haubenberger; Samir Kumar-Singh; A Zimprich; C. Van Broeckhoven

Background: Families associated with missense mutations in the valosin-containing protein (VCP) present with a rare autosomal dominant multisystem disorder of frontotemporal lobar degeneration (FTLD), inclusion body myopathy (IBM), and Paget disease of bone (PDB), referred to as IBMPFD. Methods: We used exon-based genomic DNA sequencing to test for VCP mutations in 123 unrelated Belgian patients with FTLD and their relatives, and the absence of such mutations in 157 control individuals. We analyzed haplotype sharing among mutation carriers by genotyping 8 microsatellite markers in the VCP locus. We obtained family history and clinical and pathologic data using established diagnostic instruments. Results: Mutation analysis of VCP identified 2 Belgian patients with FTLD carrying the p.Arg159His mutation, which segregated in their families. In one family, patients presented with FTLD only, whereas in the other family, patients developed FTLD, PDB, or both without signs of IBM for any of the mutation carriers. We had previously identified p.Arg159His in an Austrian family with patients exhibiting both IBM and PDB. Haplotype sharing analysis indicated that the 3 p.Arg159His families are unrelated. Clinical follow-up of the Austrian family identified dementia symptoms in 1 patient. Autopsy data of 3 patients of the 2 Belgian families revealed FTLD pathology with numerous ubiquitin-immunoreactive, intranuclear inclusions and dystrophic neurites staining positive for TDP-43 protein. Conclusions: In 3 unrelated families with IBMPFD segregating VCP p.Arg159His, we observed a high degree of clinical heterogeneity and variable penetrance of the 3 cardinal clinical phenotypes: inclusion body myopathy, Paget disease of bone, and frontotemporal lobar degeneration. In contrast, the neuropathologic phenotype was consistent with FTLD-TDP type 4.

Collaboration


Dive into the Maria Mattheijssens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rik Vandenberghe

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge