Maria Mendes
University of Coimbra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Mendes.
Simulation Practice and Theory | 1997
Fernando J. Barros; Maria Mendes
Abstract Traditional simulation methodology supports only changes in models state variables. Some models are better expressed by a combination of both changes in state variables and changes in structure. Dynamic Structure Discrete Event Specification (DSDEVS) is a recently introduced modelling and simulation formalism that provides full support for representing models with time varying structure. The DELTA simulation environment is an implementation of the DSDEVS formalism and provides full support to Structural Simulation. We show the advantages of the Dynamic Structure Cellular Automata describing the model of forest fire spreading and its implementation in the DELTA environment.
Molecular Pharmaceutics | 2017
Maria Mendes; Sandra C.C. Nunes; J.J. Sousa; Alberto A. C. C. Pais; Carla Vitorino
A monolithic drug-in-NLC-in-adhesive transdermal patch, with a novel design, was developed for codelivery of olanzapine (OL) and simvastatin (SV). Nanostructured lipid carriers (NLC) and enhancers were used as passive strategies, while the pretreatment of the skin with Dermaroller was tested as an active approach. The formulation was optimized for composition in a quality by design basis, in terms of enhancer and adhesive, with focus on permeation behavior, adhesion properties, and cytotoxicity. Propylene glycol promoted the best permeation rate for both drugs, with enhancement ratios of 8.1 and 12.9 for OL and SV, respectively, relative to the corresponding Combo-NLC patch without enhancer. Molecular dynamics results provided a rationale for these observations. The adhesive type displayed an important role in skin permeation, reinforced by the presence of the enhancer. Finally, Dermaroller pretreatment did not promote a significant improvement in permeation, which highlights the role of the combination of NLC with chemical enhancer in the transdermal patch as the main driving force in the process. It is also observed that NLC are able to reduce cytotoxicity, especially that associated with SV. This work provides a promising in vitro-in silico basis for a future in vivo development.
International Journal of Pharmaceutics | 2016
Maria Mendes; Helder T. Soares; Luis G. Arnaut; J.J. Sousa; Alberto A. C. C. Pais; Carla Vitorino
Lipid nanoparticles and their multiple designs have been considered appealing nanocarrier systems. Bringing the benefits of these nanosystems together with conventional coating technology clearly results in product differentiation. This work aimed at developing an innovative solid dosage form for oral administration based on tableting nanostructured lipid carriers (NLC), coated with conventional polymer agents. NLC dispersions co-encapsulating olanzapine and simvastatin (Combo-NLC) were produced by high pressure homogenization, and evaluated in terms of scalability, drying procedure, tableting and performance from in vitro release, cytotoxicity and intestinal permeability stand points. Factorial design indicated that the scaling-up of the NLC production is clearly feasible. Spray-drying was the method selected to obtain dry particles, not only because it consists of a single step procedure, but also because it facilitates the coating process of NLC with different polymers. Modified NLC formulations with the polymers allowed obtaining distinct release mechanisms, comprising immediate, delayed and prolonged release. Sureteric:Combo-NLC provided a low cytotoxicity profile, along with a ca. 12-fold OL/3-fold SV higher intestinal permeability, compared to those obtained with commercial tablets. Such findings can be ascribed to drug protection and control over release promoted by NLC, supporting them as a versatile platform able to be modified according to the intended needs.
European Journal of Pharmaceutical Sciences | 2018
Maria Mendes; Ana Miranda; Tânia F.G.G. Cova; L. M. Gonçalves; António J. Almeida; João J. Sousa; M.L.C. Vale; Eduardo F. Marques; Alberto A. C. C. Pais; Carla Vitorino
&NA; Surface modification of ultra‐small nanostructured lipid carriers (usNLC) via introduction of a positive charge is hypothesized to prompt site‐specific drug delivery for glioblastoma multiforme (GBM) treatment. A more effective interaction with negatively charged lipid bilayers, including the blood‐brain barrier (BBB), will facilitate the nanoparticle access to the brain. For this purpose, usNLC with a particle size of 43.82 ± 0.03 nm and a polydispersity index of 0.224 were developed following a Quality by Design approach. Monomeric and gemini surfactants, either with conventional headgroups or serine‐based ones, were tested for the surface modification, and the respective safety and efficacy to target GBM evaluated. A comprehensive in silico‐in vitro approach is also provided based on molecular dynamics simulations and cytotoxicity studies. Overall, monomeric serine‐derived surfactants displayed the best performance, considering altogether particle size, zeta potential, cytotoxic profile and cell uptake. Although conventional surfactants were able to produce usNLC with suitable physicochemical properties and cell uptake, their use is discouraged due to their high cytotoxicity. This study suggests that monomeric serine‐derived surfactants are promising agents for developing nanosystems aiming at brain drug delivery. Graphical abstract Figure. No caption available.
Pharmaceutics | 2018
Maria Mendes; João J. Sousa; Alberto A. C. C. Pais; Carla Vitorino
The poor prognosis and rapid recurrence of glioblastoma (GB) are associated to its fast-growing process and invasive nature, which make difficult the complete removal of the cancer infiltrated tissues. Additionally, GB heterogeneity within and between patients demands a patient-focused method of treatment. Thus, the implementation of nanotechnology is an attractive approach considering all anatomic issues of GB, since it will potentially improve brain drug distribution, due to the interaction between the blood–brain barrier and nanoparticles (NPs). In recent years, theranostic techniques have also been proposed and regarded as promising. NPs are advantageous for this application, due to their respective size, easy surface modification and versatility to integrate multiple functional components in one system. The design of nanoparticles focused on therapeutic and diagnostic applications has increased exponentially for the treatment of cancer. This dual approach helps to understand the location of the tumor tissue, the biodistribution of nanoparticles, the progress and efficacy of the treatment, and is highly useful for personalized medicine-based therapeutic interventions. To improve theranostic approaches, different active strategies can be used to modulate the surface of the nanotheranostic particle, including surface markers, proteins, drugs or genes, and take advantage of the characteristics of the microenvironment using stimuli responsive triggers. This review focuses on the different strategies to improve the GB treatment, describing some cell surface markers and their ligands, and reports some strategies, and their efficacy, used in the current research.
Archive | 2018
Maria Mendes; João Marcelo de Castro e Sousa; Alberto A. C. C. Pais; Carla Vitorino
Abstract Nanotechnology has become a driving force for innovation in medicine and modern healthcare, boosting advances in therapeutics, biosensors, and imaging systems. This is evidenced by the number of studies encompassing clinical applications of nanostructure-based formulations, which has been increasingly expanding. Cancer, central nervous system, and immune disorders are the leading areas in the research and development of new and better medicines, along with an early diagnosis. This chapter presents an overview of the clinical applications of nanosystems, ranging from basic research to translational medicine. In spite of the huge investments in nanotechnology, the translation of nanomedicines into clinical practice has been slow, due to several regulatory issues, including those addressing safety concerns, and also problems related to the maintenance of robustness and reproducibility in the up-scaling processes. On the other hand, several questions can be raised. Are nanostructures able to provide a better interaction with the cells? Do they warrant “smart” treatments that stimulate the body’s own repair mechanisms? Does this approach provide new solutions for a timely and improved diagnosis? Are preventive and personalized medicines becoming a reality? What will be the role of, for example, pharmacogenomics, in which the patient individual genes are targeted? The chapter also aims at providing an answer for all these challenges by focusing on the current status of representative nanomedicines still in pipeline or those that will be shortly or are already available in the market.
Archive | 2017
João Marcelo de Castro e Sousa; Ana Mir; Tania F. Cova; Maria Mendes; Carla Vitorino; Alberto A. C. C. Pais
P is a common chronic inflammatory skin disease, characterized by abnormal differentiation and proliferation of keratinocytes, angiogenesis and infiltration of inflammatory cells that secrete Th1 and Th17 associated cytokines in the skin lesion, such as TNF-α, IL-17 and IL-20. Although mRNAs that encode cytokines are short-lived mRNAs in eukaryotes, the premRNAs, which contain AU-Rich Elements (AREs) in their 3’-untranslated regions, are recognized and stabilized by Human Antigen R (HuR), an RNA-binding protein, for post-transcription. Previous studies have suggested that HuR is involved in the stabilization of mRNAs in the psoriatic skin. HuR binds to and regulates IL-20 mRNA and relocalizes to the cytoplasm of psoriatic keratinocytes. Furthermore, HuR can bind numerous transcripts involved in the pathogenesis of psoriasis. Therefore, HuR may be a potential therapeutic target for psoriasis. In the present study, we tested several novel oligopeptides that targeted the RNA binding site of HuR as therapeutic agents for psoriasis. A mouse model of imiquimod (IMQ)-induced psoriasis-like dermatitis was generated in BALB/c mice by daily topical application of IMQ cream on the ear from days 0 to 9. The mice were treated with oligopeptides from days 5 to 10. The pathological features of psoriasis were scored daily using the thickness gauge and clinical Psoriasis Area and Severity Index (PASI). We found that the oligopeptide JS-1 could significantly ameliorate psoriasis pathogenesis in a dose-dependent manner. The oligopeptide affected the HuR downstream signaling pathway. Collectively, this study may provide an alternative therapeutic strategy for psoriasis.W are looking forward to the simple but strong method to enhance a sensitivity and responsibility of Graphene Oxide (GO) by forming a self-corrugated surface of GO. The self-corrugated surface was formed by the reaction of graphene oxide with Gallium chloride. The surface of GO is more corrugated with the concentration of gallium hydroxide during the dry of GO powder. The graphene oxide structure was distorted due to the three hydroxyl groups of gallium hydroxide. The properties of wrinkled GO were investigated by scanning electron microscope, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy and atomic force microscope, respectively. This self-corrugated GO have superior advantages over normal GO for a higher sensitivity and responsibility for sensor applications.I in developing alternative energy sources is increasing due to depletion of oil resources and global warming. Therefore, fuel cells, which are new energy conversion and storage devices with low emission of pollutants, are emerging as an alternative. The process of producing hydrogen as a fuel of fuel cells requires a great deal of cost. Therefore, researches are being studying on reforming catalysts for converting natural gas rich in reserved into hydrogen energy and for use in fuel cells. In general, a transition metal (Ni, Co, Cu) or a noble metal (Ru, Pd, Pt) is used as a methane steam reforming catalyst. The noble metal catalyst has excellent catalytic activity and resistance to carbon deposition. But it is becoming a stumbling block to commercialization due to expensive cost. Ni-based catalysts are less expensive than noble metals and have a simple manufacturing process, but the problem of degradation due to carbon deposition and grain growth is pointed out as a disadvantage. In this study, Ni/MgO composite reforming catalyst activated Ni catalyst by exsolution was manufactured to improve durability. The size and amount of precipitated Ni particles were controlled by the reducing temperature and time. The catalytic activity and durability of the catalysts prepared as above were evaluated. The conversion rate of methane was measured and evaluated in the temperature range of 250-750oC and methane:water vapor = 1:2 atmospheres with catalyst in fixed bed reactor. The microstructure and distribution of the produced catalyst were confirmed by XRD and SEM.A well-defined 3D bicontinuous network structure in nanoscopic regular array has attracted considerable attention because of its potential applications such as photonic crystals, meta-materials, energy devices and superconductor. In this study, the asymmetric polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) thin films on the two different substrate with highmolecular-weight were prepared to be exposed a neutral solvent vapor to generate a hexagonal (HEX) cylindrical morphology to long-range ordered Gyroid (GYR). The interfacial interaction by different substrate interaction induced the two distinct GYR, [211] and [111] planes, which were directed from cylinders, like the parallel and perpendicular orientation on the selective and neutral substrate, respectively. Moreover, we further performed coarse-grained simulations of a block copolymer model to provide the molecular mechanisms. Our results based on experiments and simulations suggest a simple route for the controlled and well-defined GYR structures.T Fe-Mo based double perovskites have attracted much attention in the field of materials science due to their multiverse fascinating physical properties which make them suitable candidates for several technological applications. In the present work, the Sr2-xNdxFeMoO6 (0.0≤x≤0.3) samples have been investigated for their structural, magnetic and magnetocaloric properties. Polycrystalline Sr2-xNdxFeMoO6 (0.0≤x≤0.3) samples were prepared by using the conventional solid-state reaction method. To achieve the target double perovskite phase and to minimize the undesirable secondary phases, the samples were sintered in a reducing atmosphere, created by a gas mixture of 5% H2/95% Ar. The structure, microstructure and phase purity of the samples were investigated by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). XRD study confirmed the formation of tetragonal structure with Fm3m space group in all the synthesized samples. The Arrott plots and magnetization measurements showed a second order of ferromagnetic phase transition in all the fabricated samples. All the samples went through a paramagnetic to ferromagnetic phase transition at the Curie temperature (TC). A magnetocaloric effect was calculated in terms of isothermal magnetic entropy change. The value of the Relative Cooling Power (RCP) was observed to decrease with the increasing Nd content. A significant variation in the magnetocaloric properties of the samples was observed with the increasing Nd concentration. This investigation suggests that Sr2-xNdxFeMoO6 samples can be used as potential magnetic refrigerants for magnetocaloric applications.Purpose: Vorinostat (SAHA) is the most representative histone deacetylase inhibitor and a widely used anticancer drug, SAHA is applied in the treatment of hematological malignancies and most solid tumors. SAHA is challenging due to poor water solubility, low bioavailability and rapid elimination of drugs in vivo. In this study, we will prepare SAHA-Pluronic F127 Nanoparticles and investigated whether this could improve drug solubility, the effect of sustained release and inhibitory effect on cancer cells.C nanotube/polytetrafluoroethylene composite polymer targets (abbreviated as composite target) are proposed for use in the fabrication of plasma polymer fluorocarbon (abbreviated as PPFC) thin films using the mid-range frequency sputtering process. Large-area PPFC thin films were fabricated on roll-type PET substrate (polyethylene terephthalate, width 700 mm, thickness 100 μm) by a pilot-scale roll-to-roll sputtering system. The PPFC thin films exhibit an amorphous phase with a smooth surface and show a high water contact angle, optical transmittance and bendability. Mechanical property of PPFC thin films were studied using nanoindentation method and analyzed using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. As the carbon nanotube concentration in the composite target increases, a carbon cross-linked structure was formed which enhanced the film hardness and the modulus of the PPFC thin films.T monolayer graphene-Ag nanoparticles hybrids system is fabricated as the electro-optical coordinated controlled substrate of Surface-Enhanced Raman Scattering (SERS) spectroscopy. Plasmon-exciton coupling interactions of this hybrid system are systemically investigated and applied in the field of surface catalytic reactions, manipulated by the electrooptical synergy. Our experimental results demonstrate that plasmon-exciton coupling interaction co-driven surface catalytic reactions can not only be controlled via plasmon-exciton coupling, but also by gate voltages and electric current (or bias voltage). The gate voltage can tune the Density of State (DOS) of hot electrons and electric current can make the hot electrons with higher kinetic energy. Both of them can significantly promote plasmon-exciton co-driven surface catalytic reaction. Our electro-optical device based on plasmon-exciton coupling can be potentially applied in the fields of sensor, catalysis, energy and environment.C thin film coatings present unique optical properties. In this study, structural, chemical bonding and optical properties of the thin films in relation to the composition of reaction gas via sputtering process were investigated. All the thin films exhibited a polycrystalline character with cubic fluorite-structure for cerium dioxide along (111), (200) and (222) orientations. XPS analysis revealed that two oxidation states of CeO2 and Ce2O3 are present in the films prepared at lower argon-oxygen flow ratios, whereas the films are totally oxidized into CeO2 as the aforementioned ratio increases. Optical parameters (α, ε1, ε2, n and k) derived from UV-Vis reflectance data indicate that the thin films have indirect optical band gaps in the range of 2.25-3.1 eV. Density Functional Theory (DFT+U) implemented in the Cambridge Serial Total Energy Package (CASTEP) has been employed to model some optical properties of CeO2 cluster at ground state. The simulated electronic Density of State (DOS) of the relaxed structure of CeO2 demonstrates a band gap, agrees well with the measured optical band gap. The experimental and calculated absorption coefficient (α), have analogous trends and to some extent a similar range of values in the wave length. All in all, our theoretical findings consistently support the experimental results.A neuronal growth underlies the prefrontal cortical (PFC) pathology of many neurodegenerative disorders. Current treatments are inadequate and commonly cause severe side effects. Importantly, conventional pharmacotherapy strategies have limited efficacy in treating PFC dis-regulation in neurodegenerative disorders. Electrical stimulation is a modern treatment method which can include electroconvulsive therapy, Deep-Brain Stimulation (DBS) and epidural stimulation, etc. Previous studied showed that the application of electrical stimulations promotes neuritis outgrowth resulted to inter neuronal networking. Wide range of metallic microelectrodes composed of gold, steel, platinum etc. have been previously utilized to perform electrical stimulation however, rigidity, incompatible mechanical properties, high initial impedance and low chargetransfer capacity limit their application. Graphene and its derivatives are an exciting class of materials, which are utilized in microelectrodes due to having excellent mechanical stability, electrical conductivity, biocompatibility, flexibility and ability to fabricate and scale up. This work develops three-dimensional (3D) flexible electrode composed of 3D printed Reduced Liquid Crystalline Graphene Oxide (rLCGO) on a polyurethane (PU) substrate. The flexible conducting electrode is used as Host Template for Human Neural Stem Cells (hNSCs) development during proliferation and differentiation. The application of electrical stimulation on hNSC using graphene/PU electrodes revealed promising results to improve neurites guidance through 3D printed lines and enhanced cell-cell communication and networking.P method is superior in the fabrication of ultra-high-temperature ceramics with the designable composition and structure, low sintering temperature and easy densifying process. In this study, three kinds of hybrid precursors for ZrC/C, ZrC/SiC and ZrC/SiBNC multinary ceramics were synthesized via radical polymerization. ZrC/C ceramic precursor was synthesized using Cp2Zr (CH2CH=CH2) as monomer ZrC/SiC or ZrC/SiBNC precursor is obtained by further adding low molecular weight polycarbosilane (LPCS) or polyborosilazane (LPBSZ) for copolymerization. By controlling the preparation procedure, these hybrid polymers can dissolve in most organic solvent, which is essential to construct CMCs in complicated shapes and large sizes. After pyrolyzing at 1400oC, the synthesized precursors can convert into Zr-containing multinary ceramics, with ZrC nanoparticles finely dispersed in C, SiC or SiBNC matrix depending on the hybrid polymer. All of the three Zr-containing multinary ceramics can remain finely phase distribution at 1600oC, especially for ZrC/C and ZrC/SiC multinary ceramics, which can have a stabilized microstructure and little mass loss (less than 1.5 wt%) up to 2000oC in inert atmosphere. As for ZrC/SiBNC, the introduction of ZrC phase can restrict the decomposition of SiBNC matrix at 1800oC. Although the SiC and SiBNC components improve the oxidation resistance of ZrC, the oxidation weight increase of these multinary ceramics at about 500oC is still up to 5%.W synthesized cationic, one-dimensional fibril assemblies formed from coil-sheet poly(L-lysine)-block-poly(Lthreonine) (PLL-b-PLT) block co-polypeptides as anticancer agents. The 1D fibril assemblies can efficiently interact with negatively charged cellular and mitochondrial membranes via electrostatic interactions, leading to cell necrosis through membrane lysis and apoptosis via the lytic effect of mitochondria. This effect is similar to that of one-dimensional drug carriers that exhibit enhanced cell penetration. Compared to free PLL chains, PLL-b-PLT fibril assemblies exhibited more selective cytotoxicity against cancer cells, lower hemolytic activity, higher membranolytic activity and a different apoptotic pathway, which may be due to differences in the peptide-membrane interactions. The fibril assemblies significantly inhibited tumor growth, improved survival and suppressed tumor metastasis to the lung in C57BL/6 mice bearing syngeneic LL2 lung tumors. An additive antitumor activity was also observed when the tumor bearing mice were treated with PLL-b-PLT in combination with the common chemotherapeutic drug cisplatin. Collectively, these results support the feasibility of using one-dimensional fibril assemblies as potential anticancer therapeutics.C Vapor Deposition (CVD) synthesis of Carbon Nanotubes (CNTs) was carried out in a self-assembled apparatus consisting of a hot tube furnace. Magnesium oxide supported iron catalyst samples, containing varied proportions of iron loadings were prepared using impregnation method and spread uniformly over copper strips. Ceramic boats were placed in the furnace so as to expose the catalyst-loaded copper strips to industrial gases such as nitrogen, methane and hydrogen. Usage of horizontal tube furnace instead of conventional CVD reactor not only reduced the cost but also added to the simplicity of the apparatus. Additionally, ceramic boats are at least 50% cheaper than the commonly used quartz boats. FESEM tests on the resultant samples revealed that the CNTs ranged between 19.78 nm and 30.36 nm in diameter, which validates the nanotube structures. We demonstrate that increasing the iron loading in the catalyst samples enhanced the probability of CNT formation: 0% iron loading yielded no CNTs, while increasing the loading to 6.5% gave way to formation of Multi-Walled Carbon Nanotubes (MWCNTs). This study opens up an economical route for the mass production of MWCNTs.H structured materials consist of a bimodal structure with a periodic or harmonic distribution of fine and coarse grains allowing optimum combination of high strength and ductility to be attained. Harmonic structured materials have potential in variety of applications, where high wear and corrosion resistance are required. Therefore, effect of harmonically distributed fine and coarse grains on the corrosion and wear behavior of a SUS304L austenitic stainless steel was studied and compared with a non-harmonic structured SUS304L and a conventional 304 stainless steel. The corrosion study was performed using linear, potentiodynamic and cyclic polarization techniques as well as salt fog exposure test for 30 days in 3.5% NaCl solution. Improved pitting corrosion resistance was found in case of the harmonic structured steel as compared to that of the non-harmonic and the conventional 304 stainless steel. Harmonically distributed fine grained structure, less porosity and higher fraction of passive α-FeOOH are attributed to the improvement in corrosion resistance of the harmonic structured steel. The wear study was performed using fretting wear tests at varying loads under ball-on-flat contact configuration. Coefficient of friction and wear volume were found to be minimum at intermediate normal load of 5 N, whereas maximum at 10 N in case of the harmonic stainless steel compared to other two steels. Harmonically distributed fine grained structure attributes to the higher wear rate of the harmonic structured steel because of hard and soft interaction of the ball with the harmonically distributed fine and coarse grains.A Solid Oxide Electrolyzer Cells (SOECs) is an electrochemical device for producing hydrogen by electrolysis water vapor at a high temperature. SOEC is that they can operate reversibly as solid oxide fuel cells, producing electricity with high efficiency by consuming stored hydrogen. It can also be used in next-generation power generation and storage systems that produce hydrogen using surplus power. SOEC have disadvantage to provide high temperature/high-pressure water vapor to the hydrogen electrode and since oxygen is released very quickly at the air electrode, deterioration of cells and stacks is larger than SOFC and it is a stumbling block to commercialization. In this study, the effect of operating conditions on hydrogen electrode performance and deterioration of SOEC was investigated. To improve the durability of the hydrogen electrode the material technology for inhibiting oxidation of Ni/YSZ was studied. The polarization resistance and J-V characteristics are evaluated in both SOFC/SOEC. The partial pressure of water vapor is changed to 10, 30 and 50%. The change of voltage is observed under the condition of applying current density of 0.1 mA/cm2 to the cell. And the durability of the cell is evaluated by measuring the voltage change according to the SOFC-SOEC switching operation. In addition, to suppress the oxidation of the hydrogen electrode (Ni/YSZ) in a steam atmosphere, a composite hydrogen electrode was fabricated by applying anticorrosion technology and the possibility of oxidation suppression is examined.Methods: Morphology was studied by Transmission Electron Microscopy (TEM). 5 μl of freshly prepared micellar dispersions were placed on Formvar and allowed to dry for 5 min. To unveil the usefulness of such formulations concerning physical stability, formulations FM1-FM5 and meloxicam were dissolved in enteric and gastric medium. After 1 and 2 h we quantified meloxicam in gastric medium and after 3 and 4 h we quantified meloxicam in enteric medium. Quantification was performed using an UV spectrophotometer and absorbance taken at 363 nm. To determine encapsulation efficiency, FM1-FM5 was quantified immediately after preparation. Later on, micellar suspensions were centrifuged at 3000 g for 15 min using Amicon® Ultra 4 Centrifugal filter units, the supernatant was quantified and EE calculated based on the following equation: Finally, cytotoxicity of formulations was assessed in Caco-2 cells by Alamar Blue assay, performing a screening of crescent concentrations (0.625%, 1.25%, 2.5%, 5% and 10%) for each formulation.G Multiforme (GBM) is an aggressive brain tumor with poor prognosis, mainly because standard treatment is not always effective enough in reaching tumor cells. Blood-Brain Barrier (BBB) is pointed out as one of great challenges in this field. Considering the negative charge of BBB surface and its restricted permeability to small compounds, positively-charged nanoparticles have been developed to facilitate the transport of drugs through the BBB. This work aimed at studying the interaction of different cationic surfactants used in Lipid Nanoparticle (LN) formulations with BBB, using atomistic simulations. Surfactants incorporating natural structural motifs, specifically serine, were chosen instead of the conventional synthetic surfactants, due to the lower cytotoxicity and higher biodegradability, thus being environmental friendly. Molecular dynamics simulations were performed on 4 systems containing different serine-based surfactants, two of them are monomeric (16SerTFA and 12SerTFA) and the other two are dimeric ((12ser)2CON12 and (12ser)2N5), in a fully hydrated palmitoyloleoylphosphatidylcholine (POPC) lipid model, intended to mimic cell membranes of both the BBB and tumor. The systems were evaluated in terms of effects induced by the surfactants in this type of membranes and rationalize the interactions at molecular level. The results showed an integration of all surfactants into the POPC membrane. Longer chain length surfactants tended to induce the highest membrane stabilization, as evidenced by 16serTFA. Conversely, the dimeric (12ser)2CON12 led to the greater disturbance in the membrane structure, probably due to bridging phenomena. This may anticipate a better BBB cross ability of LN containing (12ser)2CON12. Overall, this computational study suggests the viability of cationic serine-based surfactants as appealing compounds in LN formulations for targeted GBM therapy.
Archive | 2018
Maria Mendes; João Marcelo de Castro e Sousa; Alberto A. C. C. Pais; Carla Vitorino
Aaps Pharmscitech | 2018
Jessica Silva; Maria Mendes; Tânia F.G.G. Cova; João Marcelo de Castro e Sousa; Alberto A. C. C. Pais; Carla Vitorino
European Journal of Obstetrics & Gynecology and Reproductive Biology | 2016
Angela Rodrigues; Sofia Pedrosa; Maria Mendes; Manuel Fonseca; Maria João Fonseca; Carlos Barata; Inês Marques; Jamon Salvado; Maia Céu Almeida