Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Mudryj is active.

Publication


Featured researches published by Maria Mudryj.


Cancer Research | 2007

Evidence for Calpain-Mediated Androgen Receptor Cleavage as a Mechanism for Androgen Independence

Stephen J. Libertini; Clifford G. Tepper; Veronica Rodriguez; David M. Asmuth; Hsing Jien Kung; Maria Mudryj

Prostate carcinoma is the most commonly diagnosed cancer in men and the second leading cause of death due to cancer in Western civilization. Androgen ablation therapy is effective in treating androgen-dependent tumors, but eventually, androgen-independent tumors recur and are refractory to conventional chemotherapeutics. Hence, the emergence of androgen independence is the most challenging problem in managing prostate tumors. We report a novel mechanism of androgen independence: calpain cleaves the androgen receptor (AR) into an androgen-independent isoform. In vitro and in vivo analyses show that calpain removes the COOH-terminal ligand binding domain generating a constitutively active molecule. Analysis of human prostate tumors indicates that several tumors express higher levels of this truncated AR than noncancerous prostate tissue. In transient transfection studies, the truncated AR is three to five times more potent than the full-length receptor in transactivating transcription. The androgen-independent Rv1 cells express high levels of the truncated AR, and treatment of these cells with a calpain inhibitor reduces truncated AR expression. In the absence of androgen, inhibition of calpain activity induces apoptosis. The HIV protease inhibitor amprenavir inhibits calpain activity and is also effective in inducing apoptosis in the Rv1 cell line. The cell culture studies were reproduced in a mouse xenograft model, where, in the absence of androgens, amprenavir significantly reduces tumor growth. Together, these studies indicate that calpain-dependent proteolysis of the AR may be a mechanism of androgen independence. The calpain inhibition studies suggest that inhibiting this activity may be a potential treatment for some androgen-independent prostate tumors.


The EMBO Journal | 2001

Cyclin A–CDK phosphorylates Sp1 and enhances Sp1‐mediated transcription

Patrick Fojas de Borja; N. Keith Collins; Ping Du; Jane Azizkhan‐Clifford; Maria Mudryj

Cyclin A‐mediated activation of cyclin‐dependent kinases (CDKs) is essential for cell cycle transversal. Cyclin A activity is regulated on several levels and cyclin A elevation in a number of cancers suggests a role in tumorigenesis. In the present study, we used a modified DNA binding site selection and PCR amplification procedure to identify DNA binding proteins that are potential substrates of cyclin A–CDK. One of the sequences identified is the Sp1 transcription factor binding site. Co‐immunoprecipitation experiments show that cyclin A and Sp1 can interact physically. In vitro and in vivo phosphorylation studies indicate that cyclin A–CDK complexes can phosphorylate Sp1. The phosphorylation site is located in the N‐terminal region of the protein. Cells overexpressing cyclin A have elevated levels of Sp1 DNA binding activity, suggesting that cyclin A–CDK‐mediated phosphorylation augments Sp1 DNA binding properties. In co‐transfection studies, cyclin A expression stimulated transcription from an Sp1‐regulated promoter. Mutation of the phosphorylation site abrogated cyclin A–CDK‐dependent phosphorylation, augmentation of Sp1 transactivation function and DNA binding activity.


Cancer Letters | 2009

Progression of prostate cancer: multiple pathways to androgen independence.

Hong Lin Devlin; Maria Mudryj

Prostate cancer remains one of the most commonly diagnosed cancers and a leading cause of cancer death in men. Initially, prostate tumors respond to hormonal therapies, but androgen-independent tumors refractory to these therapies emerge. Identifying the mechanisms responsible for the emergence of androgen independence has been the subject of multiple studies. This article reviews the multiple pathways that have been shown to promote androgen independence, including a recently described mechanism that involves androgen receptor proteolysis to a constitutively active ligand-independent isoform. Identifying the underlying mechanisms of androgen independence is crucial in the design of appropriate therapies for hormonally refractive neoplasms.


Clinical Cancer Research | 2009

Nuclear versus cytoplasmic localization of filamin A in prostate cancer: immunohistochemical correlation with metastases.

Roble Bedolla; Yu Wang; Alfredo Asuncion; Karim Chamie; Salma Siddiqui; Maria Mudryj; Thomas J. Prihoda; Javed Siddiqui; Arul M. Chinnaiyan; Rohit Mehra; Ralph W. deVere White; Paramita M. Ghosh

Purpose: We previously showed that nuclear localization of the actin-binding protein, filamin A (FlnA), corresponded to hormone-dependence in prostate cancer. Intact FlnA (280 kDa, cytoplasmic) cleaved to a 90 kDa fragment which translocated to the nucleus in hormone-naïve cells, whereas in hormone-refractory cells, FlnA was phosphorylated, preventing its cleavage and nuclear translocation. We have examined whether FlnA localization determines a propensity to metastasis in advanced androgen-independent prostate cancer. Experimental Design: We examined, by immunohistochemistry, FlnA localization in paraffin-embedded human prostate tissue representing different stages of progression. Results were correlated with in vitro studies in a cell model of prostate cancer. Results: Nuclear FlnA was significantly higher in benign prostate (0.6612 ± 0.5888), prostatic intraepithelial neoplasia (PIN; 0.6024 ± 0.4620), and clinically localized cancers (0.69134 ± 0.5686) compared with metastatic prostate cancers (0.3719 ± 0.4992, P = 0.0007). Cytoplasmic FlnA increased from benign prostate (0.0833 ± 0.2677), PIN (0.1409 ± 0.2293), localized cancers (0.3008 ± 0.3762, P = 0.0150), to metastases (0.7632 ± 0.4414, P < 0.00001). Logistic regression of metastatic versus nonmetastatic tissue yielded the area under the receiver operating curve as 0.67 for nuclear-FlnA, 0.79 for cytoplasmic-FlnA, and 0.82 for both, indicating that metastasis correlates with cytoplasmic to nuclear translocation. In vitro studies showed that cytoplasmic localization of FlnA induced cell invasion whereas nuclear translocation of the protein inhibited it. FlnA dephosphorylation with the protein kinase A inhibitor H-89 facilitated FlnA nuclear translocation, resulting in decreased invasiveness and AR transcriptional activity, and induced sensitivity to androgen withdrawal in hormone-refractory cells. Conclusions: The data presented in this study indicate that in prostate cancer, metastasis correlates with cytoplasmic localization of FlnA and may be prevented by cleavage and subsequent nuclear translocation of this protein.


Immunology‚ Endocrine & Metabolic Agents in Medicinal Chemistry | 2011

Targeting ErbB3: the New RTK(id) on the Prostate Cancer Block

Maitreyee K. Jathal; Liqun Chen; Maria Mudryj; Paramita M. Ghosh

Most prostate cancers (PCa) are critically reliant on functional androgen receptor (AR) signaling. At its onset, PCa is androgen-dependent and although temporarily halted by surgically or pharmacologically blocking the AR (androgen ablation), the disease ultimately recurs as an aggressive, fatal castration resistant prostate cancer (CRPC). FDA-approved treatments like docetaxel, a chemotherapeutic agent, and Provenge, a cancer vaccine, extend survival by a scant 3 and 4 months, respectively. It is clear that more effective drugs targeting CRPC are urgently needed. The ErbB family (EGFR/ErbB1, ErbB2/HER2/neu, ErbB3/HER3 and ErbB4/HER4) of receptor tyrosine kinases (RTKs) have long been implicated in PCa initiation and progression, but inhibitors of ErbB1 and ErbB2 (prototypic family members) fared poorly in PCa clinical trials. Recent research suggests that another family member ErbB3 abets emergence of the castration-resistant phenotype. Considerable efforts are being directed towards understanding ErbB3-mediated molecular mechanisms of castration resistance and searching for novel ways of inhibiting ErbB3 activity via rational drug design. Antibody-based therapy that prevents ligand binding to ErbB3 appears promising and fully-humanized antibodies that inhibit ligand-induced phosphorylation of ErbB3 are currently in early development. Small molecule tyrosine kinase inhibitors are also being vigorously pursued, as are siRNA-based approaches and combination treatment strategies- the simultaneous suppression of ErbB3 and its signaling partners or downstream effectors - with the primary purpose of undermining the resiliency of ErbB3-mediated signal transduction. This review summarizes the existing literature and reinforces the importance of ErbB3 as a therapeutic target in the clinical management of prostate cancer.


Oncogene | 2002

Ectopic expression of cyclin E in estrogen responsive cells abrogates antiestrogen mediated growth arrest

Navdeep K. Dhillon; Maria Mudryj

Estrogens stimulate proliferation of estrogen receptor positive MCF7 breast cancer cells while antiestrogens signal a G0/G1 growth arrest. In MCF7 cells, arrest is mediated through the CDK inhibitors p21 and p27 and through a decrease in cyclin E/CDK2 kinase activity. We found that in MCF7 cells, overexpression of cyclin E partially abrogates a tamoxifen mediated growth arrest. Overexpression of cyclin E is accompanied by a decrease in the levels of RB and CDK inhibitor p21 but an increase in CDK inhibitor p27. Cyclin E overexpression also alters the composition of E2F transcription factor complexes. The E2F4/p107/cyclin E/CDK2 complex, a minor component in proliferating control cells that is absent in growth-arrested cells, is more abundant in both proliferating and tamoxifen treated cyclin E overexpressing cells. Conversely, levels of the quiescence associated E2F/p130 complex is not detected in these cells. Expression from the E2F dependant promoter is elevated in proliferating and tamoxifen treated cyclin E overexpressing cells. This study suggests that a modest overexpression of cyclin E abrogates the tamoxifen mediated growth arrest through modification of the RB/E2F pathway. Moreover, these results provide one explanation of why some cells that express the estrogen receptor may be unresponsive to antiestrogens.


Molecular Cancer Research | 2008

Impairment of the DNA repair and growth arrest pathways by p53R2 silencing enhances DNA damage-induced apoptosis in a p53-dependent manner in prostate cancer cells.

Hong Lin Devlin; P. C. Mack; Rebekah A. Burich; Paul H. Gumerlock; Hsing Jien Kung; Maria Mudryj; Ralph W. deVere White

p53R2 is a p53-inducible ribonucleotide reductase that contributes to DNA repair by supplying deoxynucleotide triphosphate pools in response to DNA damage. In this study, we found that p53R2 was overexpressed in prostate tumor cell lines compared with immortalized prostatic epithelial cells and that the protein was induced upon DNA damage. We investigated the effects of p53R2 silencing on DNA damage in LNCaP cells (wild-type p53). Silencing p53R2 potentiated the apoptotic effects of ionizing radiation and doxorubicin treatment as shown by increased sub-G1 content and decreased colony formation. This sensitizing effect was specific to DNA-damaging agents. Comet assay and γ-H2AX phosphorylation status showed that the decreased p53R2 levels inhibited DNA repair. Silencing p53R2 also reduced the levels of p21WAF1/CIP1 at the posttranscriptional level, suggesting links between the p53-dependent DNA repair and cell cycle arrest pathways. Using LNCaP sublines stably expressing dominant-negative mutant p53, we found that the sensitizing effect of p53R2 silencing is mediated by p53-dependent apoptosis pathways. In the LNCaP sublines (R273H, R248W, and G245S) that have defects in inducing p53-dependent apoptosis, p53R2 silencing did not potentiate DNA damage–induced apoptosis, whereas p53R2 silencing was effective in a LNCaP subline (P151S) which retains the ability to induce p53-dependent apoptosis. This study shows that p53R2 is a potential therapeutic target that could be used to enhance the effectiveness of ionizing radiation or DNA-damaging chemotherapy in a subset of patients with prostate cancer. (Mol Cancer Res 2008;6(5):808–18)


Cancer Research | 2005

Cyclin E Both Regulates and Is Regulated by Calpain 2, a Protease Associated with Metastatic Breast Cancer Phenotype

Stephen J. Libertini; Brian S. Robinson; Navdeep K. Dhillon; Danielle Glick; Michael D. George; Satya Dandekar; Jeffrey P. Gregg; Earl T. Sawai; Maria Mudryj

Overexpression of cyclin E in breast tumors is associated with a poor response to tamoxifen therapy, greater genomic instability, more aggressive behavior, and a poor clinical prognosis. These tumors also express low molecular weight isoforms of cyclin E that are associated with higher kinase activity and increased metastatic potential. In the current study, we show that cyclin E overexpression in MCF7 cells transactivates the expression of calpain 2, leading to proteolysis of cyclin E as well as several known calpain substrates including focal adhesion kinase (FAK), calpastatin, pp60src, and p53. In vivo inhibition of calpain activity in MCF7-cyclin E cells impedes cyclin E proteolysis, whereas in vivo induction of calpain activity promotes cyclin E proteolysis. An analysis of human breast tumors shows that high levels of cyclin E are coincident with the expression of the low molecular weight isoforms, high levels of calpain 2 protein, and proteolysis of FAK. Lastly, studies using a mouse model of metastasis reveal that highly metastatic tumors express proteolyzed cyclin E and FAK when compared to tumors with a low metastatic potential. Our results suggest that cyclin E-dependent deregulation of calpain may be pivotal in modifying multiple cellular processes that are instrumental in the etiology and progression of breast cancer.


Journal of Biological Chemistry | 2010

ERK Regulates Calpain 2-induced Androgen Receptor Proteolysis in CWR22 Relapsed Prostate Tumor Cell Lines

Honglin Chen; Stephen J. Libertini; Yu Wang; Hsing Jien Kung; Paramita M. Ghosh; Maria Mudryj

Androgen ablation therapy is effective in treating androgen-dependent prostate tumors; however, tumors that can proliferate in castrate levels of androgen eventually arise. We previously reported that in CWR22Rv1 (Rv1) cells, the protease calpain 2 can cleave the androgen receptor (AR) into a constitutively active ∼80,000 low molecular weight (LMW) form. In this study, we further dissect the mechanisms that produce the AR LMW forms using Rv1 cells and the related CWR22-R1 (R1) cells. The 39-amino acid insertional mutation in the Rv1-AR (E3DM-AR) sensitizes this AR to calpain 2 proteolysis. R1 cells encode the same AR molecule as the parental CWR22 xenograft. Using calpain 2 small interfering RNA and calpeptin, we find that calpain 2 plays a role in the generation of the LMW-AR in R1 cells. Furthermore, LMW-AR expression is regulated by the activation of calpain 2 by ERK 1 and 2. Inhibition of ERK phosphorylation or small interfering RNA-mediated decrease of ERK expression reduces LMW-AR levels in R1 cells. Conversely, activation of the MAPK pathway results in increased ERK phosphorylation and increased levels of LMW-AR. Finally, analyses of human tumor samples found that LMW-AR levels are higher in tumors that have an increased calpain/calpastatin ratio and/or increased levels of phospho-ERK (pERK). This suggests that a higher calpain/calpastatin ratio collaborates with activated ERK to promote the generation of the LMW-AR.


Endocrine-related Cancer | 2010

Genome-wide analysis of androgen receptor binding and gene regulation in two CWR22-derived prostate cancer cell lines

Honglin Chen; Stephen J. Libertini; Michael D. George; Satya Dandekar; Clifford G. Tepper; Bushra al-Bataina; Hsing Jien Kung; Paramita M. Ghosh; Maria Mudryj

Prostate carcinoma (CaP) is a heterogeneous multifocal disease where gene expression and regulation are altered not only with disease progression but also between metastatic lesions. The androgen receptor (AR) regulates the growth of metastatic CaPs; however, sensitivity to androgen ablation is short lived, yielding to emergence of castrate-resistant CaP (CRCaP). CRCaP prostate cancers continue to express the AR, a pivotal prostate regulator, but it is not known whether the AR targets similar or different genes in different castrate-resistant cells. In this study, we investigated AR binding and AR-dependent transcription in two related castrate-resistant cell lines derived from androgen-dependent CWR22-relapsed tumors: CWR22Rv1 (Rv1) and CWR-R1 (R1). Expression microarray analysis revealed that R1 and Rv1 cells had significantly different gene expression profiles individually and in response to androgen. In contrast, AR chromatin immunoprecipitation (ChIP) combined with promoter DNA microarrays (ChIP-on-chip) studies showed that they have a similar AR-binding profile. Coupling of the microarray study with ChIP-on-chip analysis identified direct AR targets. The most prominent function of transcripts that were direct AR targets was transcriptional regulation, although only one transcriptional regulator, CCAAT/enhancer binding protein δ, was commonly regulated in both lines. Our results indicate that the AR regulates the expression of different transcripts in the two lines, and demonstrate the versatility of the AR-regulated gene expression program in prostate tumors.

Collaboration


Dive into the Maria Mudryj's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salma Siddiqui

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Honglin Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Ruth L. Vinall

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge