Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Rajecki is active.

Publication


Featured researches published by Maria Rajecki.


Molecular Therapy | 2010

Treatment of Cancer Patients With a Serotype 5/3 Chimeric Oncolytic Adenovirus Expressing GMCSF

Anniina Koski; Lotta Kangasniemi; Sophie Escutenaire; Sari Pesonen; Vincenzo Cerullo; Iulia Diaconu; Petri Nokisalmi; Mari Raki; Maria Rajecki; Kilian Guse; Tuuli Ranki; Minna Oksanen; Sirkka-Liisa Holm; Elina Haavisto; Aila Karioja-Kallio; Leena Laasonen; Kaarina Partanen; Matteo Ugolini; Andreas Helminen; Eerika Karli; Päivi Hannuksela; S Pesonen; Timo Joensuu; Anna Kanerva; Akseli Hemminki

Augmenting antitumor immunity is a promising way to enhance the potency of oncolytic adenoviral therapy. Granulocyte-macrophage colony-stimulating factor (GMCSF) can mediate antitumor effects by recruiting natural killer cells and by induction of tumor-specific CD8(+) cytotoxic T-lymphocytes. Serotype 5 adenoviruses (Ad5) are commonly used in cancer gene therapy. However, expression of the coxsackie-adenovirus receptor is variable in many advanced tumors and preclinical data have demonstrated an advantage for replacing the Ad5 knob with the Ad3 knob. Here, a 5/3 capsid chimeric and p16-Rb pathway selective oncolytic adenovirus coding for GMCSF was engineered and tested preclinically. A total of 21 patients with advanced solid tumors refractory to standard therapies were then treated intratumorally and intravenously with Ad5/3-D24-GMCSF, which was combined with low-dose metronomic cyclophosphamide to reduce regulatory T cells. No severe adverse events occurred. Analysis of pretreatment samples of malignant pleural effusion and ascites confirmed the efficacy of Ad5/3-D24-GMCSF in transduction and cell killing. Evidence of biological activity of the virus was seen in 13/21 patients and 8/12 showed objective clinical benefit as evaluated by radiology with Response Evaluation Criteria In Solid Tumors (RECIST) criteria. Antiadenoviral and antitumoral immune responses were elicited after treatment. Thus, Ad5/3-D24-GMCSF seems safe in treating cancer patients and promising signs of efficacy were seen.


Cancer Research | 2010

Oncolytic Adenovirus Coding for Granulocyte Macrophage Colony-Stimulating Factor Induces Antitumoral Immunity in Cancer Patients

Vincenzo Cerullo; Sari Pesonen; Iulia Diaconu; Sophie Escutenaire; Petteri Arstila; Matteo Ugolini; Petri Nokisalmi; Mari Raki; Leena Laasonen; Merja Särkioja; Maria Rajecki; Lotta Kangasniemi; Kilian Guse; Andreas Helminen; Laura Ahtiainen; Ari Ristimäki; Anne Räisänen-Sokolowski; Elina Haavisto; Minna Oksanen; Eerika Karli; Aila Karioja-Kallio; Sirkka-Liisa Holm; Mauri Kouri; Timo Joensuu; Anna Kanerva; Akseli Hemminki

Granulocyte macrophage colony-stimulating factor (GMCSF) can mediate antitumor effects by recruiting natural killer cells and by induction of tumor-specific cytotoxic T-cells through antigen-presenting cells. Oncolytic tumor cell-killing can produce a potent costimulatory danger signal and release of tumor epitopes for antigen-presenting cell sampling. Therefore, an oncolytic adenovirus coding for GMCSF was engineered and shown to induce tumor-specific immunity in an immunocompetent syngeneic hamster model. Subsequently, 20 patients with advanced solid tumors refractory to standard therapies were treated with Ad5-D24-GMCSF. Of the 16 radiologically evaluable patients, 2 had complete responses, 1 had a minor response, and 5 had disease stabilization. Responses were frequently seen in injected and noninjected tumors. Treatment was well tolerated and resulted in the induction of both tumor-specific and virus-specific immunity as measured by ELISPOT and pentamer analysis. This is the first time that oncolytic virus-mediated antitumor immunity has been shown in humans. Ad5-D24-GMCSF is promising for further clinical testing.


Molecular Therapy | 2011

Immunological Effects of Low-dose Cyclophosphamide in Cancer Patients Treated With Oncolytic Adenovirus

Vincenzo Cerullo; Iulia Diaconu; Lotta Kangasniemi; Maria Rajecki; Sophie Escutenaire; Anniina Koski; Valentina Romano; Noora Rouvinen; Tamara Tuuminen; Leena Laasonen; Kaarina Partanen; Satu Kauppinen; Timo Joensuu; Minna Oksanen; Sirkka-Liisa Holm; Elina Haavisto; Aila Karioja-Kallio; Anna Kanerva; Sari Pesonen; Petteri Arstila; Akseli Hemminki

Patients with advanced solid tumors refractory to and progressing after conventional therapies were treated with three different regimens of low-dose cyclophosphamide (CP) in combination with oncolytic adenovirus. CP was given with oral metronomic dosing (50 mg/day, N = 21), intravenously (single 1,000 mg dose, N = 7) or both (N = 7). Virus was injected intratumorally. Controls (N = 8) received virus without CP. Treatments were well tolerated and safe regardless of schedule. Antibody formation and virus replication were not affected by CP. Metronomic CP (oral and oral + intravenous schedules) decreased regulatory T cells (T(regs)) without compromising induction of antitumor or antiviral T-cell responses. Oncolytic adenovirus given together with metronomic CP increased cytotoxic T cells and induced Th1 type immunity on a systemic level in most patients. All CP regimens resulted in higher rates of disease control than virus only (all P < 0.0001) and the best progression-free (PFS) and overall survival (OS) was seen in the oral + intravenous group. One year PFS and OS were 53 and 42% (P = 0.0016 and P < 0.02 versus virus only), respectively, both which are unusually high for chemotherapy refractory patients. We conclude that low-dose CP results in immunological effects appealing for oncolytic virotherapy. While these first-in-human data suggest good safety, intriguing efficacy and extended survival, the results should be confirmed in a randomized trial.


Clinical Cancer Research | 2010

Oncolytic Adenovirus ICOVIR-7 in Patients with Advanced and Refractory Solid Tumors

Petri Nokisalmi; Sari Pesonen; Sophie Escutenaire; Merja Särkioja; Mari Raki; Vincenzo Cerullo; Leena Laasonen; Ramon Alemany; Juan J. Rojas; Manel Cascallo; Kilian Guse; Maria Rajecki; Lotta Kangasniemi; Elina Haavisto; Aila Karioja-Kallio; Päivi Hannuksela; Minna Oksanen; Anna Kanerva; Timo Joensuu; Laura Ahtiainen; Akseli Hemminki

Purpose: Twenty-one patients with cancer were treated with a single round of oncolytic adenovirus ICOVIR-7. Experimental Design: ICOVIR-7 features an RGD-4C modification of the fiber HI-loop of serotype 5 adenovirus for enhanced entry into tumor cells. Tumor selectivity is mediated by an insulator, a modified E2F promoter, and a Rb-binding site deletion of E1A, whereas replication is optimized with E2F binding hairpins and a Kozak sequence. ICOVIR-7 doses ranged from 2 × 1010 to 1 × 1012 viral particles. All patients had advanced and metastatic solid tumors refractory to standard therapies. Results: ICOVIR-7 treatment was well tolerated with mild to moderate fever, fatigue, elevated liver transaminases, chills, and hyponatremia. One patient had grade 3 anemia but no other serious side effects were seen. At baseline, 9 of 21 of patients had neutralizing antibody titers against the ICOVIR-7 capsid. Treatment resulted in neutralizing antibody titer induction within 4 weeks in 16 of 18 patients. No elevations of serum proinflammatory cytokine levels were detected. Viral genomes were detected in the circulation in 18 of 21 of patients after injection and 7 of 15 of the samples were positive 2 to 4 weeks later suggesting viral replication. Conclusions: Overall, objective evidence of antitumor activity was seen in 9 of 17 evaluable patients. In radiological analyses, 5 of 12 evaluable patients had stabilization or reduction in tumor size. These consisted of one partial response, two minor responses and two cases of stable disease, all occurring in patients who had progressive disease before treatment. In summary, ICOVIR-7 treatment is apparently safe, resulting in anticancer activity, and is therefore promising for further clinical testing. Clin Cancer Res; 16(11); 3035–43. ©2010 AACR.


Gene Therapy | 2010

Prolonged systemic circulation of chimeric oncolytic adenovirus Ad5/3-Cox2L-D24 in patients with metastatic and refractory solid tumors

S Pesonen; Petri Nokisalmi; Sophie Escutenaire; Merja Särkioja; M Raki; Vincenzo Cerullo; Lotta Kangasniemi; Leena Laasonen; Camilla Ribacka; Kilian Guse; Elina Haavisto; Minna Oksanen; Maria Rajecki; Andreas Helminen; Ari Ristimäki; Aila Karioja-Kallio; Eerika Karli; Teemu Kantola; Gerd J. Bauerschmitz; A Kanerva; T. Joensuu; Akseli Hemminki

Eighteen patients with refractory and progressive solid tumors were treated with a single round of triple modified oncolytic adenovirus (Ad5/3-Cox2L-D24). Ad5/3-Cox2L-D24 is the first non-Coxsackie-adenovirus receptor-binding oncolytic adenovirus used in humans. Grades 1–2 flu-like symptoms, fever, and fatigue were seen in most patients, whereas transaminitis or thrombocytopenia were seen in some. Non-hematological grades 3–5 side effects were seen in one patient with grade 3 ileus. Treatment resulted in high neutralizing antibody titers within 3 weeks. Virus appeared in serum 2–4 days after treatment in 83% of patients and persisted for up to 5 weeks. One out of five radiologically evaluable patients had partial response (PR), one had minor response (MR), and three had progressive disease (PD). Two patients scored as PD had a decrease in tumor density. Tumor reductions not measurable with Response Evaluation Criteria In Solid Tumors (RECIST) were seen in a further four patients. PR, MR, stable disease, and PD were seen in 12, 23.5, 35, and 29.5% of tumor markers analyzed, respectively (N=17). Ad5/3-Cox2L-D24 appears safe for treatment of cancer in humans and extended virus circulation results from a single treatment. Objective evidence of anti-tumor activity was seen in 11/18 (61%) of patients. Clinical trials are needed to extend these findings.


Molecular Cancer Therapeutics | 2007

Treatment of metastatic renal cancer with capsid-modified oncolytic adenoviruses

Kilian Guse; Tuuli Ranki; Martti Ala-Opas; Petri Bono; Merja Särkioja; Maria Rajecki; Anna Kanerva; Tanja Hakkarainen; Akseli Hemminki

Renal cancer is a common and deadly disease that lacks curative treatments when metastatic. Here, we have used oncolytic adenoviruses, a promising developmental approach whose safety has recently been validated in clinical trials. Although preliminary clinical efficacy data exist for selected tumor types, potency has generally been less than impressive. One important reason may be that expression of the primary receptor, coxsackie-adenovirus receptor, is often low on many or most advanced tumors, although not evaluated in detail with renal cancer. Here, we tested if fluorescence-assisted cell sorting could be used to predict efficacy of a panel of infectivity-enhanced capsid-modified marker gene expressing adenoviruses in renal cancer cell lines, clinical specimens, and subcutaneous and orthotopic murine models of peritoneally metastatic renal cell cancer. The respective selectively oncolytic adenoviruses were tested for killing of tumor cells in these models, and biodistribution after locoregional delivery was evaluated. In vivo replication was analyzed with noninvasive imaging. Ad5/3-Δ24, Ad5-Δ24RGD, and Ad5.pK7-Δ24 significantly increased survival of mice compared with mock or wild-type virus and 50% of Ad5/3-Δ24 treated mice were alive at 320 days. Because renal tumors are often highly vascularized, we investigated if results could be further improved by adding bevacizumab, a humanized antivascular endothelial growth factor antibody. The combination was well tolerated but did not improve survival, suggesting that the agents may be best used in sequence instead of together. These results set the stage for clinical testing of oncolytic adenoviruses for treatment of metastatic renal cancer currently lacking other treatment options. [Mol Cancer Ther 2007;6(10):2728–36]


Clinical Cancer Research | 2009

Targeted Radiotherapy for Prostate Cancer with an Oncolytic Adenovirus Coding for Human Sodium Iodide Symporter

Tanja Hakkarainen; Maria Rajecki; Mirkka Sarparanta; Mikko Tenhunen; Anu J. Airaksinen; Renee A. Desmond; Kalevi Kairemo; Akseli Hemminki

Purpose: Oncolytic adenoviruses are promising tools for cancer therapy. Although several clinical reports have indicated both safety and promising antitumor capabilities for these viruses, there are only a few examples of complete tumor eradication. Thus, the antitumor efficacy of oncolytic adenoviruses needs to be improved. One potentially useful approach is combination with radiotherapy. Experimental Design: To target systemically administered radioiodide to tumors, we created Ad5/3-Δ24-human sodium iodide symporter (hNIS), a Rb-p16 pathway selective infectivity enhanced oncolytic adenovirus encoding hNIS. Results: Ad5/3-Δ24-hNIS replication effectively killed prostate cancer cells in vitro and in vivo. Also, the virus-mediated radioiodide uptake into prostate cancer cells in vitro and into tumors in vivo. Furthermore, Ad5/3-Δ24-hNIS with radioiodide was significantly more effective than virus alone in mice with prostate cancer xenografts. Conclusions: These results suggest that oncolytic adenovirus-mediated targeted radiotherapy might be a potentially useful option for enhancing the efficacy or adenoviral virotherapy. (Clin Cancer Res 2009;15(17):5396–403)


Molecular Cancer Therapeutics | 2007

Treatment of prostate cancer with Ad5/3Δ24hCG allows non-invasive detection of the magnitude and persistence of virus replication in vivo

Maria Rajecki; Anna Kanerva; Ulf-Håkan Stenman; Mikko Tenhunen; Lotta Kangasniemi; Merja Särkioja; Martti Ala-Opas; Henrik Alfthan; Anna Sankila; Erkki Rintala; Renee A. Desmond; Tanja Hakkarainen; Akseli Hemminki

Hormone refractory metastatic prostate cancer is a deadly disease that currently lacks curative treatments. Conditionally replicating adenoviruses (CRAds) are promising new agents against cancer due to their innate capability to cause oncolysis of tumor cells. Their antitumor effect is determined in part by their capacity for infecting cancer cells. However, the respective primary receptor, the coxsackie-adenovirus receptor (CAR), is variably expressed in many cancer types. We created Ad5/3Δ24hCG, a novel CRAd retargeted to the adenovirus serotype 3 receptor, which has been reported to be highly expressed in tumors. Furthermore, we added a transgene for the β-chain of human chorionic gonadotropin (hCGβ), whose expression was tightly coupled to virus replication. Ad5/3Δ24hCG was found effective in killing prostate cancer cells, and oncolysis was seen in concordance with hCGβ production. In a s.c. in vivo model of hormone refractory prostate cancer, Ad5/3Δ24hCG treatment resulted in statistically significant tumor growth inhibition. Moreover, i.v. injection of Ad5/3Δ24hCG prolonged the survival of mice with hormone refractory prostate cancer metastatic to the lung. Detection of hCGβ in serum samples confirmed viral replication in vivo. Infection of human clinical samples of cancerous and normal prostatic tissue resulted in effective hCGβ production in cancer tissue, whereas it remained low in nonmalignant tissue, suggesting cancer-specific replication. These results suggest that Ad5/3Δ24hCG is a potent virus for the treatment of hormone refractory prostate cancer in vitro and in vivo. These preclinical data set the stage for translation into clinical studies. [Mol Cancer Ther 2007;6(2):742–51]


Journal of Gene Medicine | 2009

Systemic adenoviral gene delivery to orthotopic murine breast tumors with ablation of coagulation factors, thrombocytes and Kupffer cells.

Anniina Koski; Maria Rajecki; Kilian Guse; Anna Kanerva; Ari Ristimäki; Sari Pesonen; Sophie Escutenaire; Akseli Hemminki

Rapid clearance of adenoviruses from blood by macrophage lineage cells of the liver and spleen, and binding to platelets, hinder their successful systemic use for cancer gene therapy. Vitamin K dependent coagulation factors are important mediators for the adenovirus liver tropism. Here we aim to determine the effects of coagulation factor, thrombocyte and liver macrophage (Kupffer cell) ablation on biodistribution of serotype 5 adenoviruses in mice with orthotopic breast tumors.


Acta Oncologica | 2009

Oncolytic adenovirus treatment of a patient with refractory neuroblastoma

Sari Pesonen; Heikki Helin; Petri Nokisalmi; Sophie Escutenaire; Camilla Ribacka; Merja Särkioja; Vincenzo Cerullo; Kilian Guse; Gerd J. Bauerschmitz; Leena Laasonen; Teemu Kantola; Ari Ristimäki; Maria Rajecki; Minna Oksanen; Elina Haavisto; Anna Kanerva; Timo Joensuu; Akseli Hemminki

1Cancer Gene Therapy Group, Transplantation Laboratory and Finnish Institute of Molecular Medicine, University of Helsinki, Finland, 2HUSLAB, Helsinki University Central Hospital, Finland, 3Haartman Institute, University of Helsinki, Finland, 4Department of Pathology, Helsinki University Central Hospital, Finland, 5Department of Obstetrics and Gynecology, Duesseldorf University Medical Center, Heinrich-Heine University, Germany, 6Helsinki Medical Imaging Center, University of Helsinki, Finland, 7Department of Anesthesiology, Helsinki University Central Hospital, Finland, 8Genome Scale Biology Program, Biomedicum Helsinki, Finland, 9Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Finland and 10Docrates Oncology Hospital, Helsinki, Finland

Collaboration


Dive into the Maria Rajecki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kilian Guse

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge