Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akseli Hemminki is active.

Publication


Featured researches published by Akseli Hemminki.


Nature | 1998

A serine/threonine kinase gene defective in Peutz-Jeghers syndrome

Akseli Hemminki; David Markie; Ian Tomlinson; Egle Avizienyte; Stina Roth; Anu Loukola; Bignell G; Warren W; Aminoff M; Höglund P; Heikki Järvinen; Paula Kristo; Katarina Pelin; Maaret Ridanpää; Reijo Salovaara; Toro T; Walter F. Bodmer; Olschwang S; Anne S. Olsen; Stratton Mr; de la Chapelle A; Lauri A. Aaltonen

Studies of hereditary cancer syndromes have contributed greatly to our understanding of molecular events involved in tumorigenesis. Here we investigate the molecular background of the Peutz–Jeghers syndrome, (PJS), a rare hereditary disease in which there is predisposition to benign and malignant tumours of many organ systems. A locus for this condition was recently assigned to chromosome 19p (ref. 3). We have identified truncating germline mutations in a gene residing on chromosome 19p in multiple individuals affected by PJS. This previously identified but unmapped gene, LKB1 (ref. 4), has strong homology to a cytoplasmic Xenopus serine/threonine protein kinase XEEK1 (ref. 5), and weaker similarity to many other protein kinases. Peutz–Jeghers syndrome is therefore the first cancer-susceptibility syndrome to be identified that is due to inactivating mutations in a protein kinase.


The New England Journal of Medicine | 1998

Incidence of Hereditary Nonpolyposis Colorectal Cancer and the Feasibility of Molecular Screening for the Disease

Lauri A. Aaltonen; Reijo Salovaara; Paula Kristo; Federico Canzian; Akseli Hemminki; Päivi Peltomäki; Robert B. Chadwick; Helena Kääriäinen; Matti Eskelinen; Heikki Järvinen; Jukka-Pekka Mecklin; Albert de la Chapelle; Antonio Percesepe; Heikki Ahtola; Niilo Härkönen; Risto Julkunen; Eero Kangas; Seppo Ojala; Jukka Tulikoura; Erkki Valkamo

BACKGROUND Genetic disorders that predispose people to colorectal cancer include the polyposis syndromes and hereditary nonpolyposis colorectal cancer. In contrast to the polyposis syndromes, hereditary nonpolyposis colorectal cancer lacks distinctive clinical features. However, a germ-line mutation of DNA mismatch-repair genes is a characteristic molecular feature of the disease. Since clinical screening of carriers of such mutations can help prevent cancer, it is important to devise strategies applicable to molecular screening for this disease. METHODS We prospectively screened tumor specimens obtained from 509 consecutive patients with colorectal adenocarcinomas for DNA replication errors, which are characteristic of hereditary colorectal cancers. These replication errors were detected through microsatellite-marker analyses of tumor DNA. DNA from normal tissue from the patients with replication errors was screened for germ-line mutations of the mismatch-repair genes MLH1 and MSH2. RESULTS Among the 509 patients, 63 (12 percent) had replication errors. Specimens of normal tissue from 10 of these 63 patients had a germ-line mutation of MLH1 or MSH2. Of these 10 patients (2 percent of the 509 patients), 9 had a first-degree relative with endometrial or colorectal cancer, 7 were under 50 years of age, and 4 had had colorectal or endometrial cancer previously. CONCLUSIONS In this series of patients with colorectal cancer in Finland, at least 2 percent had hereditary nonpolyposis colorectal cancer. We recommend testing for replication errors in all patients with colorectal cancer who meet one or more of the following criteria: a family history of colorectal or endometrial cancer, an age of less than 50 years, and a history of multiple colorectal or endometrial cancers. Patients found to have replication errors should undergo further analysis for germ-line mutations in DNA mismatch-repair genes.


Nature Medicine | 2003

Blockade of B7-H1 improves myeloid dendritic cell–mediated antitumor immunity

Tyler J. Curiel; Shuang Wei; Haidong Dong; Xavier Alvarez; Pui Cheng; Peter Mottram; Roman Krzysiek; Keith L. Knutson; Ben Daniel; Maria Zimmermann; Odile David; Matthew E. Burow; Alan N. Gordon; Nina Dhurandhar; Leann Myers; Ruth E. Berggren; Akseli Hemminki; Ronald D. Alvarez; Dominique Emilie; David T. Curiel; Lieping Chen; Weiping Zou

Suppression of dendritic cell function in cancer patients is thought to contribute to the inhibition of immune responses and disease progression. Molecular mechanisms of this suppression remain elusive, however. Here, we show that a fraction of blood monocyte-derived myeloid dendritic cells (MDCs) express B7-H1, a member of the B7 family, on the cell surface. B7-H1 could be further upregulated by tumor environmental factors. Consistent with this finding, virtually all MDCs isolated from the tissues or draining lymph nodes of ovarian carcinomas express B7-H1. Blockade of B7-H1 enhanced MDC-mediated T-cell activation and was accompanied by downregulation of T-cell interleukin (IL)-10 and upregulation of IL-2 and interferon (IFN)-γ. T cells conditioned with the B7-H1–blocked MDCs had a more potent ability to inhibit autologous human ovarian carcinoma growth in non-obese diabetic–severe combined immunodeficient (NOD-SCID) mice. Therefore, upregulation of B7-H1 on MDCs in the tumor microenvironment downregulates T-cell immunity. Blockade of B7-H1 represents one approach for cancer immunotherapy.


OncoImmunology | 2014

Consensus guidelines for the detection of immunogenic cell death

Oliver Kepp; Laura Senovilla; Ilio Vitale; Erika Vacchelli; Sandy Adjemian; Patrizia Agostinis; Lionel Apetoh; Fernando Aranda; Vincenzo Barnaba; Norma Bloy; Laura Bracci; Karine Breckpot; David Brough; Aitziber Buqué; Maria G. Castro; Mara Cirone; María I. Colombo; Isabelle Cremer; Sandra Demaria; Luciana Dini; Aristides G. Eliopoulos; Alberto Faggioni; Silvia C. Formenti; Jitka Fucikova; Lucia Gabriele; Udo S. Gaipl; Jérôme Galon; Abhishek D. Garg; François Ghiringhelli; Nathalia A. Giese

Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named “immunogenic cell death” (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.


Nature Medicine | 2011

Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14

Hongjie Wang; Zong Yi Li; Ying Liu; Jonas Persson; Ines Beyer; Thomas Möller; Dilara Koyuncu; Max R. Drescher; Robert Strauss; Xiao Bing Zhang; James K. Wahl; Nicole Urban; Charles W. Drescher; Akseli Hemminki; Pascal Fender; André Lieber

We have identified desmoglein-2 (DSG-2) as the primary high-affinity receptor used by adenoviruses Ad3, Ad7, Ad11 and Ad14. These serotypes represent key human pathogens causing respiratory and urinary tract infections. In epithelial cells, adenovirus binding of DSG-2 triggers events reminiscent of epithelial-to-mesenchymal transition, leading to transient opening of intercellular junctions. This opening improves access to receptors, for example, CD46 and Her2/neu, that are trapped in intercellular junctions. In addition to complete virions, dodecahedral particles (PtDds), formed by excess amounts of viral capsid proteins, penton base and fiber during viral replication, can trigger DSG-2–mediated opening of intercellular junctions as shown by studies with recombinant Ad3 PtDds. Our findings shed light on adenovirus biology and pathogenesis and may have implications for cancer therapy.


Molecular Therapy | 2010

Treatment of Cancer Patients With a Serotype 5/3 Chimeric Oncolytic Adenovirus Expressing GMCSF

Anniina Koski; Lotta Kangasniemi; Sophie Escutenaire; Sari Pesonen; Vincenzo Cerullo; Iulia Diaconu; Petri Nokisalmi; Mari Raki; Maria Rajecki; Kilian Guse; Tuuli Ranki; Minna Oksanen; Sirkka-Liisa Holm; Elina Haavisto; Aila Karioja-Kallio; Leena Laasonen; Kaarina Partanen; Matteo Ugolini; Andreas Helminen; Eerika Karli; Päivi Hannuksela; S Pesonen; Timo Joensuu; Anna Kanerva; Akseli Hemminki

Augmenting antitumor immunity is a promising way to enhance the potency of oncolytic adenoviral therapy. Granulocyte-macrophage colony-stimulating factor (GMCSF) can mediate antitumor effects by recruiting natural killer cells and by induction of tumor-specific CD8(+) cytotoxic T-lymphocytes. Serotype 5 adenoviruses (Ad5) are commonly used in cancer gene therapy. However, expression of the coxsackie-adenovirus receptor is variable in many advanced tumors and preclinical data have demonstrated an advantage for replacing the Ad5 knob with the Ad3 knob. Here, a 5/3 capsid chimeric and p16-Rb pathway selective oncolytic adenovirus coding for GMCSF was engineered and tested preclinically. A total of 21 patients with advanced solid tumors refractory to standard therapies were then treated intratumorally and intravenously with Ad5/3-D24-GMCSF, which was combined with low-dose metronomic cyclophosphamide to reduce regulatory T cells. No severe adverse events occurred. Analysis of pretreatment samples of malignant pleural effusion and ascites confirmed the efficacy of Ad5/3-D24-GMCSF in transduction and cell killing. Evidence of biological activity of the virus was seen in 13/21 patients and 8/12 showed objective clinical benefit as evaluated by radiology with Response Evaluation Criteria In Solid Tumors (RECIST) criteria. Antiadenoviral and antitumoral immune responses were elicited after treatment. Thus, Ad5/3-D24-GMCSF seems safe in treating cancer patients and promising signs of efficacy were seen.


Molecular Therapy | 2003

Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus

Anna Kanerva; Kurt R Zinn; Tandra R Chaudhuri; John T. Lam; Kaori Suzuki; Taco G. Uil; Tanja Hakkarainen; Gerd J. Bauerschmitz; Minghui Wang; Bin Liu; Zhihong Cao; Ronald D. Alvarez; David T. Curiel; Akseli Hemminki

Oncolytic viruses that are replication competent in tumor but not in normal cells represent a novel approach for treating neoplastic diseases. However, the oncolytic potency of replicating agents is determined directly by their capability of infecting target cells. Most adenoviruses used for gene therapy or virotherapy have been based on serotype 5 (Ad5). Unfortunately, expression of the primary receptor for Ad5 (the coxsackie-adenovirus receptor, or CAR) is highly variable on ovarian and other cancer cells. By performing genetic fiber pseudotyping, we created Ad5/3-Delta24, a conditionally replicating adenovirus that does not bind CAR but facilitates entry into and killing of ovarian cancer cells. We show replication of Ad5/3-Delta24 and subsequent oncolysis of ovarian adenocarcinoma lines. Replication was also analyzed with quantitative PCR on three-dimensional primary tumor cell spheroids purified from patient samples. Moreover, in a therapeutic orthotopic model of peritoneal carcinomatosis, dramatically enhanced survival was noted. Finally, Ad5/3-Delta24 achieved a significant antitumor effect as assessed by noninvasive, in vivo bioluminescence imaging. Therefore, the preclinical therapeutic efficacy of Ad5/3-Delta24 is improved over the respective CAR- and integrin-binding controls. Taken together with promising biodistribution and toxicity data, this approach could translate into successful clinical interventions for ovarian cancer patients.


Human Molecular Genetics | 2010

Mitochondrial myopathy induces a starvation-like response

Henna Tyynismaa; Christopher J. Carroll; Nuno Raimundo; Sofia Ahola-Erkkilä; Tina Wenz; Heini Ruhanen; Kilian Guse; Akseli Hemminki; Katja Peltola-Mjösund; Valtteri Tulkki; Matej Orešič; Carlos T. Moraes; Kirsi H. Pietiläinen; Iiris Hovatta; Anu Suomalainen

Mitochondrial respiratory chain (RC) deficiency is among the most common causes of inherited metabolic disease, but its physiological consequences are poorly characterized. We studied the skeletal muscle gene expression profiles of mice with late-onset mitochondrial myopathy. These animals express a dominant patient mutation in the mitochondrial replicative helicase Twinkle, leading to accumulation of multiple mtDNA deletions and progressive subtle RC deficiency in the skeletal muscle. The global gene expression pattern of the mouse skeletal muscle showed induction of pathways involved in amino acid starvation response and activation of Akt signaling. Furthermore, the muscle showed induction of a fasting-related hormone, fibroblast growth factor 21 (Fgf21). This secreted regulator of lipid metabolism was also elevated in the mouse serum, and the animals showed widespread changes in their lipid metabolism: small adipocyte size, low fat content in the liver and resistance to high-fat diet. We propose that RC deficiency induces a mitochondrial stress response, with local and global changes mimicking starvation, in a normal nutritional state. These results may have important implications for understanding the metabolic consequences of mitochondrial myopathies.


Cancer Research | 2010

Oncolytic Adenovirus Coding for Granulocyte Macrophage Colony-Stimulating Factor Induces Antitumoral Immunity in Cancer Patients

Vincenzo Cerullo; Sari Pesonen; Iulia Diaconu; Sophie Escutenaire; Petteri Arstila; Matteo Ugolini; Petri Nokisalmi; Mari Raki; Leena Laasonen; Merja Särkioja; Maria Rajecki; Lotta Kangasniemi; Kilian Guse; Andreas Helminen; Laura Ahtiainen; Ari Ristimäki; Anne Räisänen-Sokolowski; Elina Haavisto; Minna Oksanen; Eerika Karli; Aila Karioja-Kallio; Sirkka-Liisa Holm; Mauri Kouri; Timo Joensuu; Anna Kanerva; Akseli Hemminki

Granulocyte macrophage colony-stimulating factor (GMCSF) can mediate antitumor effects by recruiting natural killer cells and by induction of tumor-specific cytotoxic T-cells through antigen-presenting cells. Oncolytic tumor cell-killing can produce a potent costimulatory danger signal and release of tumor epitopes for antigen-presenting cell sampling. Therefore, an oncolytic adenovirus coding for GMCSF was engineered and shown to induce tumor-specific immunity in an immunocompetent syngeneic hamster model. Subsequently, 20 patients with advanced solid tumors refractory to standard therapies were treated with Ad5-D24-GMCSF. Of the 16 radiologically evaluable patients, 2 had complete responses, 1 had a minor response, and 5 had disease stabilization. Responses were frequently seen in injected and noninjected tumors. Treatment was well tolerated and resulted in the induction of both tumor-specific and virus-specific immunity as measured by ELISPOT and pentamer analysis. This is the first time that oncolytic virus-mediated antitumor immunity has been shown in humans. Ad5-D24-GMCSF is promising for further clinical testing.


Journal of Virology | 2008

Generation of a conditionally replicating adenovirus based on targeted destruction of E1A mRNA by a cell type-specific MicroRNA.

Erkko Ylösmäki; Tanja Hakkarainen; Akseli Hemminki; Tapio Visakorpi; Raul Andino; Kalle Saksela

ABSTRACT MicroRNAs have emerged as important players in tissue-specific mammalian gene regulation and have also been exploited in experimental targeting of gene expression. We have constructed a recombinant adenovirus that contains sequences complementary to the liver-specific microRNA 122 (miR122) in the 3′ untranslated region of the E1A gene. In Huh7 cells, which resemble normal hepatocytes in expressing high levels of miR122, this feature resulted in strongly reduced levels of E1A mRNA and protein. This property allowed us to generate a novel recombinant adenovirus that was severely attenuated in cells of hepatic origin but replicated normally in other cells. This strategy may be useful in circumventing liver toxicity associated with the systemic delivery of oncolytic adenoviruses. These data provide the first example of exploiting differential microRNA expression patterns to alter the natural tropism of a DNA virus. In addition, these results suggest that other microRNAs expressed in a tissue- or transformation-specific manner may also be used for the targeting of adenoviral replication and that the same principle may be applied to other viruses that have shown promise as oncolytic or gene delivery platforms.

Collaboration


Dive into the Akseli Hemminki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sari Pesonen

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David T. Curiel

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timo Joensuu

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kilian Guse

University of Helsinki

View shared research outputs
Researchain Logo
Decentralizing Knowledge