Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Rosaria Crisci is active.

Publication


Featured researches published by Maria Rosaria Crisci.


Journal of Difference Equations and Applications | 2000

Stability of discrete volterra equations of hammerstein type

Maria Rosaria Crisci; V.B. Kolmanovskii; E. Russo; Antonia Vecchio

Stability conditions for Volterra equations with discrete time are obtained using direct Liapunov method, without usual assumption of the summability of the series of the coeffcients. Using such conditions, the stability of some numerical methods for second kind Volterra integral equation is analyzed.


Journal of Mathematical Analysis and Applications | 1991

Stability analysis of discrete recurrence equations of Volterra type with degenerate kernels

Maria Rosaria Crisci; Z. Jackiewicz; E. Russo; Antonia Vecchio

Abstract Stability criteria are derived for difference equations of Volterra type with degenerate kernels. The main tool in this analysis is the use of the new representation formula which allows us to express the solution of discrete Volterra equation with degenerate kernel in terms of the fundamental matrix of the corresponding first-order system of the difference equations.


Journal of Difference Equations and Applications | 2000

On the exponential stability of discrete volterra systems

Maria Rosaria Crisci; V.B. Kolimanovskll; E. Russo; A. Vecchio

In this paper necessary and sufficient conditions for the exponential stability of discrete linear Volterra systems are proved. Sufficient conditions, expressed directly in terms of the coefficients, are derived


Computing | 1988

On the stability of the one-step exact collocation method for the second kind Volterra integral equation with degenerate kernel

Maria Rosaria Crisci; E. Russo; Antonia Vecchio

The local stability properties of the collocation method applied to a second kind Volterra integral equation with degenerate kernel are investigated.A finite length recurrence relation is derived and theorems for the local stability of the methods are proved.ZusammenfassungEs werden die lokalen Stabilitätseigenschaften der Kollokationsmethode, angewandt auf Volterrasche Integralgleichungen zweiter Art mit degeneriertem Kern, untersucht.Eine Rekursionsrelation endlicher Ordnung wird angegeben, und es werden Sätze über die lokale Stabilität der Methode bewiesen.


Computing | 1991

Global stability analysis of the Runge-Kutta methods for Volterra integral and integro-differential equations with degenerate kernels

Maria Rosaria Crisci; Z. Jackiewicz; E. Russo; Antonia Vecchio

We investigate the stability of the numerical solutions resulting from applying very general classes of Runge-Kutta methods to Volterra integral and integro-differential equations with degenerate kernels. The results are generalizations of previous results obtained by the authors for exact collocation methods for these equations.ZusammenfassungWir untersuchen die Stabilität der numerischen Lösung von Volterraschen Integral- und Integral-Differentialgleichungen mit degeneriertem Kern mit Hilfe von ganz allgemeinen Klassen von Runge-Kutta Methoden. Die Resultate sind Verallgemeinerungen früherer Resultate, die von den Autoren für die exakte Kollokationsmethode für diese Gleichungen erhalten worden sind.


Journal of Mathematical Analysis and Applications | 1997

Boundedness of Discrete Volterra Equations

Maria Rosaria Crisci; V.B. Kolmanovskii; E. Russo; Antonia Vecchio


Journal of Integral Equations and Applications | 1995

Stability of Continuous and Discrete Volterra Integro-Differential Equations by Liapunov Approach

Maria Rosaria Crisci; V.B. Kolmanovskii; E. Russo; Antonia Vecchio


Journal of Integral Equations and Applications | 2004

Nonstationary Waveform Relaxation Methods for Abel Integral Equations

Giovanni Capobianco; Maria Rosaria Crisci; E. Russo


Journal of Integral Equations and Applications | 1992

Stability of Collocation Methods for Volterra Integro-Differential Equations

Maria Rosaria Crisci; E. Russo; Antonia Vecchio


Journal of Difference Equations and Applications | 2004

Periodic Solution of Whole Line Difference Equations

Maria Rosaria Crisci; E. Russo; Antonia Vecchio

Collaboration


Dive into the Maria Rosaria Crisci's collaboration.

Top Co-Authors

Avatar

E. Russo

University of Salerno

View shared research outputs
Top Co-Authors

Avatar

Z. Jackiewicz

AGH University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

V.B. Kolmanovskii

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

V.B. Kolimanovskll

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. Vecchio

Mathematica Policy Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge