Maria Rosaria Crisci
University of Salerno
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Rosaria Crisci.
Journal of Difference Equations and Applications | 2000
Maria Rosaria Crisci; V.B. Kolmanovskii; E. Russo; Antonia Vecchio
Stability conditions for Volterra equations with discrete time are obtained using direct Liapunov method, without usual assumption of the summability of the series of the coeffcients. Using such conditions, the stability of some numerical methods for second kind Volterra integral equation is analyzed.
Journal of Mathematical Analysis and Applications | 1991
Maria Rosaria Crisci; Z. Jackiewicz; E. Russo; Antonia Vecchio
Abstract Stability criteria are derived for difference equations of Volterra type with degenerate kernels. The main tool in this analysis is the use of the new representation formula which allows us to express the solution of discrete Volterra equation with degenerate kernel in terms of the fundamental matrix of the corresponding first-order system of the difference equations.
Journal of Difference Equations and Applications | 2000
Maria Rosaria Crisci; V.B. Kolimanovskll; E. Russo; A. Vecchio
In this paper necessary and sufficient conditions for the exponential stability of discrete linear Volterra systems are proved. Sufficient conditions, expressed directly in terms of the coefficients, are derived
Computing | 1988
Maria Rosaria Crisci; E. Russo; Antonia Vecchio
The local stability properties of the collocation method applied to a second kind Volterra integral equation with degenerate kernel are investigated.A finite length recurrence relation is derived and theorems for the local stability of the methods are proved.ZusammenfassungEs werden die lokalen Stabilitätseigenschaften der Kollokationsmethode, angewandt auf Volterrasche Integralgleichungen zweiter Art mit degeneriertem Kern, untersucht.Eine Rekursionsrelation endlicher Ordnung wird angegeben, und es werden Sätze über die lokale Stabilität der Methode bewiesen.
Computing | 1991
Maria Rosaria Crisci; Z. Jackiewicz; E. Russo; Antonia Vecchio
We investigate the stability of the numerical solutions resulting from applying very general classes of Runge-Kutta methods to Volterra integral and integro-differential equations with degenerate kernels. The results are generalizations of previous results obtained by the authors for exact collocation methods for these equations.ZusammenfassungWir untersuchen die Stabilität der numerischen Lösung von Volterraschen Integral- und Integral-Differentialgleichungen mit degeneriertem Kern mit Hilfe von ganz allgemeinen Klassen von Runge-Kutta Methoden. Die Resultate sind Verallgemeinerungen früherer Resultate, die von den Autoren für die exakte Kollokationsmethode für diese Gleichungen erhalten worden sind.
Journal of Mathematical Analysis and Applications | 1997
Maria Rosaria Crisci; V.B. Kolmanovskii; E. Russo; Antonia Vecchio
Journal of Integral Equations and Applications | 1995
Maria Rosaria Crisci; V.B. Kolmanovskii; E. Russo; Antonia Vecchio
Journal of Integral Equations and Applications | 2004
Giovanni Capobianco; Maria Rosaria Crisci; E. Russo
Journal of Integral Equations and Applications | 1992
Maria Rosaria Crisci; E. Russo; Antonia Vecchio
Journal of Difference Equations and Applications | 2004
Maria Rosaria Crisci; E. Russo; Antonia Vecchio