Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Santacana is active.

Publication


Featured researches published by Maria Santacana.


Journal of Clinical Pathology | 2009

Molecular pathology of endometrial carcinoma: practical aspects from the diagnostic and therapeutic viewpoints

David Llobet; Judith Pallares; Maria Santacana; Nuria Eritja; Ana Velasco; Xavier Dolcet; Xavier Matias-Guiu

This article reviews the main molecular alterations involved in endometrial carcinoma. Five molecular features (microsatellite instability, and mutations in the PTEN, k-RAS, PIK3CA and β-catenin genes) are characteristic of endometrioid carcinomas, whereas non-endometrioid carcinomas show alterations of p53, loss of heterozygosity (LOH) on several chromosomes, as well as other molecular alterations (STK15, p16, E-cadherin and C-erb B2). The review also covers the phenomenon of apoptosis resistance, as well as the results obtained from cDNA array studies, and the perspectives for targeted therapies. A group of practical applications of molecular pathology techniques are also mentioned: diagnosis of hereditary non-polyposis colon cancer syndrome in patients with endometrial carcinoma; evaluation of precursor lesions; prognosis; diagnosis, particularly for synchronous endometrioid carcinomas of the uterus and the ovaries; and targeted therapies.


Modern Pathology | 2008

Promoter hypermethylation and reduced expression of RASSF1A are frequent molecular alterations of endometrial carcinoma.

Judit Pallares; Ana Velasco; Nuria Eritja; Maria Santacana; Xavier Dolcet; Miriam Cuatrecasas; Víctor Palomar-Asenjo; Lluis Catasús; Jaime Prat; Xavier Matias-Guiu

Alterations in the regulation of the RAS–MAPK pathway are frequent in endometrial carcinoma. RASSF1A is a tumor-suppressor gene that can regulate this pathway negatively. RASSF1A has been found to be inactivated by promoter methylation in some human tumors. The aim of the study was to assess the immunohistochemical expression of RASSF1A in normal endometrium and endometrial carcinoma, and to correlate its expression with K-RAS mutations, presence of microsatellite instability, RASSF1A promoter methylation, and clinicopathological data. RASSF1A immunostaining was evaluated in one tissue microarray constructed from 80 paraffin-embedded samples of normal endometrium, and two tissue microarrays constructed with a total of 157 endometrial carcinomas (one constructed with 95 endometrial carcinomas previously evaluated for K-RAS mutations, and microsatellite instability, and another one containing 62 endometrial carcinomas that were also subjected to RASSF1A promoter methylation analysis). RASSF1A immunostaining was correlated with cell proliferation (Ki67), Cyclin D1 expression and clinicopathological data. Promoter methylation of RASSF1A was assessed by methylation-specific PCR. RASSF1A immunostaining was variable during the menstrual cycle in normal endometrium. RASSF1A expression was significantly reduced in 48% of endometrial carcinomas, particularly in tumors exhibiting microsatellite instability. RASSF1A-promoter methylation was very frequent in endometrial carcinoma (74%), and was frequently associated with reduced expression of RASSF1A. RASSF1A-promoter hypermethylation was common in advanced-stage endometrial carcinoma. The results suggest that reduced expression of RASSF1A may play a role in endometrial carcinogenesis by controlling cell proliferation and apoptosis through the MAPK-signaling pathway.


Modern Pathology | 2011

FGFR2 alterations in endometrial carcinoma

Sonia Gatius; Ana Velasco; Ainara Azueta; Maria Santacana; Judit Pallares; Joan Valls; Xavier Dolcet; Jaime Prat; Xavier Matias-Guiu

Fibroblast growth factor receptor 2 (FGFR2) is a tyrosine kinase receptor involved in many biological processes such as embryogenesis, adult tissue homeostasis and cell proliferation. Mutations in FGFR2 have been reported in up to 10–12% of endometrial carcinomas identical to those found in congenital craniofacial disorders. Inhibition of FGFR2 could be a new therapeutic target in endometrial carcinoma. FGFR2 immunostaining was assessed in three tissue microarrays: one constructed from paraffin-embedded blocks of 60 samples of normal endometrium in different phases of menstrual cycle, and two tissue microarrays containing endometrial carcinoma samples (95 and 62 cases). FGFR2 expression was correlated with stage, histological type and grade as well as with immunostaining of PTEN, RASSF1A, estrogen and progesterone receptors, KI67, Cyclin D1, STAT-3 and SPRY2. FGFR2 mutations were assessed by PCR and direct sequencing, with DNA obtained from 31 paraffin-embedded endometrial carcinoma samples. In normal endometrium, FGFR2 expression was higher in the secretory than in the proliferative phase (P=0.001), with an inverse correlation with Ki67 (P=0.00032), suggesting a tumor-suppressor role for FGFR2 in normal endometrium. Cytoplasmic expression of FGFR2 was higher in endometrial carcinoma when compared with the atrophic endometrium from the same patients (P=0.0283), but was lower in comparison with normal endometrium from women in the menstrual cycle. Interestingly, nuclear staining was observed in some cases, and it was less frequent in endometrial carcinoma when compared with the adjacent atrophic endometrium (P=0.0465). There were no statistical differences when comparing superficial and myoinvasive endometrial carcinoma samples. Endometrioid endometrial carcinomas showed higher expression of FGFR2 than nonendometrioid endometrial carcinomas (fold change 2.56; P=0.0015). Grade III endometrioid endometrial carcinomas showed decreased FGFR2 expression when compared with grade II endometrioid endometrial carcinomas (P=0.0055). No differences were found regarding pathological stage. Two missense mutations of FGFR2 gene were detected in exons 6 and 11 (S252W and N549K, respectively; 6.45%). Results support the hypothesis that FGFR2 has a dual role in the endometrium, by inhibiting cell proliferation in normal endometrium during the menstrual cycle, but acting as an oncogene in endometrial carcinoma.


European Journal of Cancer | 2010

The multikinase inhibitor Sorafenib induces apoptosis and sensitises endometrial cancer cells to TRAIL by different mechanisms

David Llobet; Nuria Eritja; Judith Pallares; Anabel Sorolla; Mónica Domingo; Maria Santacana; F.J. Gonzalez-Tallada; Xavier Matias-Guiu; Xavier Dolcet

Sorafenib induces apoptosis and enhances Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-induced cell killing of tumoural cells. We have investigated the effects of the multikinase inhibitor Sorafenib alone or in combination with TRAIL and agonistic Fas antibodies on endometrial carcinoma cells. We have also focused on the search of the differential molecular mechanisms by which Sorafenib induces cell death and the ones involved in sensitisation to TRAIL. In the present study, we show that Sorafenib induces apoptosis of both endometrial cancer cell lines and human primary cultures and sensitises these cells to TRAIL and agonistic Fas antibodies (aFas)-induced apoptosis. However, Raf/MEK/ERK inhibition by Sorafenib was not responsible for Sorafenib cell death or TRAIL sensitisation of endometrial cancer cells. Sorafenib treatment correlated with a downregulation of both FLICE-Inhibitory Protein (FLIP) and myeloid cell leukaemia-1 (Mcl-1), caused by a proteasomal degradation of both proteins. We evaluated the contribution of FLIP and Mcl-1 downregulation in apoptosis triggered by Sorafenib alone or Sorafenib plus TRAIL. Interestingly, cell death caused by Sorafenib was mediated by downregulation of Mcl-1, but not by FLIP. In contrast, we found that Sorafenib sensitisation of endometrial carcinoma cells to TRAIL- and Fas-induced apoptosis was dependent on FLIP but not on Mcl-1 downregulation. Altogether, we discern the dual mechanisms by which Sorafenib causes cell death from those involved in death receptor sensitisation.


Human Pathology | 2011

Promoter hypermethylation and expression of sprouty 2 in endometrial carcinoma.

Ana Velasco; Judit Pallares; Maria Santacana; Sonia Gatius; Melisa Fernandez; Mónica Domingo; Joan Valls; Mario Encinas; Xavier Dolcet; Xavier Matias-Guiu

Sprouty 2 is a key antagonist regulator of receptor tyrosine kinases, and downstream signaling pathways, like fibroblastic growth factor (FGF) and Ras-mitogen-activated protein kinase (RAS-MAPK). By controlling these pathways, sprouty 2 is involved in regulation of cell proliferation, differentiation, and angiogenesis. Alterations in fibroblastic growth factor receptor (FGFR) and members of the RAS-MAPK pathway are frequent in endometrial carcinoma. The expression of sprouty 2 has been found to be decreased in several types of human cancer, by mechanisms of promoter methylation. In the present study, we have assessed the expression of sprouty 2 in endometrial carcinoma, in correlation with sprouty 2 promoter methylation. Sprouty 2 immunohistochemical expression was assessed using 3 different tissue microarrays: one constructed from paraffin blocks of 80 samples of normal endometrium and 2 tissue microarrays containing samples of 157 endometrial carcinoma (1 tissue microarray constructed with 95 endometrial carcinomas previously studied for microsatellite instability and alterations in phosphatase and tensin homolog (PTEN), k-ras, and b-catenin, and 1 tissue microarray containing 62 endometrial carcinoma, which were also subjected to sprouty 2 promoter methylation analysis). The immunohistochemical expression of sprouty 2 was correlated with cellular proliferation (Ki67) and clinicopathologic data. Sprouty 2 promoter methylation was assessed by methylation-specific polymerase chain reaction, with DNA obtained from fresh-frozen samples of endometrial carcinoma and corresponding normal tissues, and correlated with promoter methylation of RAS association domain family-1A (RASSF1A). A highly significant decrease in sprouty 2 immunoexpression was seen in the proliferative phase of normal endometrium (P < .001). Differences were detected between types I and II endometrial carcinoma, but they were not statistically significant. Reduced immunoexpression of sprouty 2 was seen in 19.85% of endometrial carcinoma and was strongly and inversely associated with increased cell proliferation (Ki67; r = -0.367; P = .001). Sprouty 2 promoter methylation was detected in 31 (53.4%) of 58 endometrial carcinomas. Results from our study show that alterations in sprouty 2 may be involved in endometrial carcinogenesis by controlling cell proliferation.


American Journal of Pathology | 2010

A Novel Three-Dimensional Culture System of Polarized Epithelial Cells to Study Endometrial Carcinogenesis

Nuria Eritja; David Llobet; Mónica Domingo; Maria Santacana; Xavier Matias-Guiu; Xavi Dolcet

Development of three-dimensional (3D) cultures that mimic in vivo tissue organization has a pivotal role in the investigation of the involvement of cell adhesion and polarity genes in the pathogenesis of epithelial cancers. Here we describe a novel 3D culture model with primary mouse endometrial epithelial cells. In this model, isolated endometrial epithelial cells develop single-lumened, polarized glandular structures resembling those observed in endometrial tissue. Our in vitro 3D culture model of endometrial glands requires the use of serum-free defined medium with only epidermal growth factor and insulin as growth supplements and 3% Matrigel as reconstituted extracellular matrix. Under these culture conditions, glands of epithelial cells displaying typical apicobasal polarity and proper positioning of tight and adherent junctions are formed by hollowing as early as 7 to 8 days in culture. Addition of the phosphatidylinositol 3-kinase inhibitor LY294002 completely inhibits bromodeoxyuridine incorporation and cyclinD1 expression, confirming that in vitro growth of endometrial glands depends on phosphatidylinositol 3-kinase/Akt signaling. To prove that our culture method is a good model to study endometrial carcinogenesis, we knocked down E-cadherin or phosphatase and tensin homolog expression by lentivirus-delivered short hairpin RNAs. Down-regulation of E-cadherin resulted in complete loss of epithelial cell polarity and glandular formation, whereas phosphatase and tensin homolog down-regulation resulted in increased proliferation of glandular epithelial cells. These properties indicate that our 3D culture model is suitable to study the effect of growth factors, drugs, and gene alterations in endometrial carcinogenesis and to study normal endometrial biology/physiology.


Virchows Archiv | 2012

Importance of assessing CK19 immunostaining in core biopsies in patients subjected to sentinel node study by OSNA

Felip Vilardell; Anna Novell; Javier Rodríguez Martín; Maria Santacana; Ana Velasco; M. J. Díez-Castro; Dolors Cuevas; M. Jose Panadés; Serafín Vegas González; Antonio Llombart; Edelmiro Iglesias; Xavier Matias-Guiu

Analysis of sentinel lymph node (SLN) by means of One-Step Nucleic Acid Amplification (OSNA) is being used increasingly as a very sensitive and quick method for intraoperative axillary staging in patients with breast cancer. This molecular diagnostic assay detects the expression level of cytokeratin 19 (CK19), a luminal epithelial cell marker broadly expressed in most breast carcinomas and not normally found in lymph nodes. Almost all breast cancers express this cytoskeleton protein, but some breast tumors have been found to lose the expression of CK19. CK19 immunostaining in core biopsies has been recommended in selecting patients eligible for OSNA analysis because SLNs with metastatic involvement by CK19-negative breast cancers may result in a false negative result by OSNA. However, the real frequency of CK19-negative breast cancer has to be elucidated. In this study, we have assessed the frequency and molecular profile of CK19-negative breast carcinomas in three series of cases. The first is a prospective series of 197 breast carcinomas, 111 of which were subjected to SLN evaluation by OSNA. The second is a retrospective series of 41 triple-negative (TN) breast carcinomas, and the third is a retrospective series of 68 breast cancer patients (matched core biopsies and metastatic lymph nodes) that had been evaluated by conventional procedures before the OSNA methodology was adopted in our institution. Our results not only demonstrate that lack of expression of CK19 is infrequent in breast cancers but also that performing CK19 immunohistochemical staining is important on diagnostic core biopsies in taking the decision of using OSNA methodology in the evaluation of sentinel nodes in breast cancer patients.


American Journal of Pathology | 2009

CK2β Is Expressed in Endometrial Carcinoma and Has a Role in Apoptosis Resistance and Cell Proliferation

Judit Pallares; David Llobet; Maria Santacana; Nuria Eritja; Ana Velasco; Dolors Cuevas; Susana Ros López; Víctor Palomar-Asenjo; Xavier Dolcet; Xavier Matias-Guiu

Protein kinase CK2 (CK2) is a serine/threonine kinase that participates in important cellular processes. We have recently demonstrated that CK2 plays a role in resistance to TRAIL/Fas-induced apoptosis in endometrial carcinoma (EC) by regulating FLIP. Here, we assessed the immunohistochemical expression of CK2beta in EC and checked its role in cell proliferation and anchorage-independent cell growth. CK2beta immunostaining was assessed in two tissue microarrays, one constructed from paraffin-embedded blocks of 95 ECs and another from 70 samples of normal endometrium. CK2beta expression was correlated with histological type; grade and stage; cell proliferation (Ki-67) and apoptotic index; immunostaining for cyclin D1, PTEN, AKT, beta-catenin, and FLIP. Moreover, the Ishikawa EC cell line was subjected to down-regulation of CK2 by shRNA. CK2beta expression was frequent in EC (nuclear, 100%; cytoplasmic, 87.5%). The staining was more intense in EC than in normal endometrium (P = 0.000), and statistically correlated with AKT, PTEN, beta-catenin, and FLIP. In EC, CK2beta expression correlated with cell proliferation. Knock-down of CK2beta blocked colony formation of EC in soft agar, and also resulted in decreased expression of cyclin D1 and ERK phosphorylation. The results confirm that CK2beta is widely expressed in EC, and suggest a role in cell proliferation and anchorage-independent cell growth.


Cancer Research | 2013

Immune-Dependent and Independent Antitumor Activity of GM-CSF Aberrantly Expressed by Mouse and Human Colorectal Tumors

Rocío G. Urdinguio; Agustín F. Fernández; Angela Moncada-Pazos; Covadonga Huidobro; Ramón María Alvargonzález Rodríguez; Cecilia Ferrero; Pablo Martínez-Camblor; Alvaro J. Obaya; Teresa Bernal; Adolfo Parra-Blanco; Luis Rodrigo; Maria Santacana; Xavier Matias-Guiu; Beatriz Soldevilla; Gemma Domínguez; Félix Bonilla; Santiago Cal; Carlos López-Otín; Mario F. Fraga

Granulocyte-macrophage colony-stimulating factor (GM-CSF/CSF2) is a cytokine produced in the hematologic compartment that may enhance antitumor immune responses, mainly by activation of dendritic cells. Here, we show that more than one-third of human colorectal tumors exhibit aberrant DNA demethylation of the GM-CSF promoter and overexpress the cytokine. Mouse engraftment experiments with autologous and homologous colon tumors engineered to repress the ectopic secretion of GM-CSF revealed the tumor-secreted GM-CSF to have an immune-associated antitumor effect. Unexpectedly, an immune-independent antitumor effect was observed that depended on the ectopic expression of GM-CSF receptor subunits by tumors. Cancer cells expressing GM-CSF and its receptor did not develop into tumors when autografted into immunocompetent mice. Similarly, 100% of the patients with human colon tumors that overexpressed GM-CSF and its receptor subunits survived at least 5 years after diagnosis. These data suggest that expression of GM-CSF and its receptor subunits by colon tumors may be a useful marker for prognosis as well as for patient stratification in cancer immunotherapy.


American Journal of Pathology | 2011

KSR1 Is Overexpressed in Endometrial Carcinoma and Regulates Proliferation and TRAIL-Induced Apoptosis by Modulating FLIP Levels

David Llobet; Nuria Eritja; Mónica Domingo; Laura Bergadà; Cristina Mirantes; Maria Santacana; Judit Pallares; Anna Macià; Mario Encinas; Gema Moreno-Bueno; José Palacios; Robert E. Lewis; Xavier Matias-Guiu; Xavi Dolcet

The Raf/MEK/extracellular signal-regulated kinase (ERK) pathway participates in many processes altered in development and progression of cancer in human beings such as proliferation, transformation, differentiation, and apoptosis. Kinase suppressor of Ras 1 (KSR1) can interact with various kinases of the Raf/MEK/extracellular signal-regulated kinase pathway to enhance its activation. The role of KSR1 in endometrial carcinogenesis was investigated. cDNA and tissue microarrays demonstrated that expression of KSR1 was up-regulated in endometrial carcinoma. Furthermore, inhibition of KSR1 expression by specific small hairpin RNA resulted in reduction of both proliferation and anchorage-independent cell growth properties of endometrial cancer cells. Because inhibition of apoptosis has a pivotal role in endometrial carcinogenesis, the effects of KSR1 in regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis were investigated. KSR1 knock-down sensitized resistant endometrial cell lines to both TRAIL- and Fas-induced apoptosis. Sensitization to TRAIL and agonistic anti-Fas antibody was caused by down-regulation of FLIP (FLICE-inhibitory protein). Also investigated was the molecular mechanism by which KSR1 regulates FLIP protein levels. It was demonstrated that KSR1 small hairpin RNA did not affect FLIP transcription or degradation. Rather, FLIP down-regulation was caused by Fas-associated death domain protein-dependent inhibition of FLIP translation triggered after TRAIL stimulation in KSR1-silenced cells. Re-expression of heterologous KSR1 in cells with down-regulated endogenous KSR1 restored FLIP protein levels and TRAIL resistance. In conclusion, KSR1 regulates endometrial sensitivity to TRAIL by regulating FLIP levels.

Collaboration


Dive into the Maria Santacana's collaboration.

Top Co-Authors

Avatar

Xavier Matias-Guiu

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Xavier Dolcet

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Nuria Eritja

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Sonia Gatius

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Ana Velasco

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Judit Pallares

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Joan Valls

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Cristina Mirantes

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

David Llobet

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Oscar Maiques

Hospital Universitari Arnau de Vilanova

View shared research outputs
Researchain Logo
Decentralizing Knowledge