Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nuria Eritja is active.

Publication


Featured researches published by Nuria Eritja.


Journal of Clinical Pathology | 2009

Molecular pathology of endometrial carcinoma: practical aspects from the diagnostic and therapeutic viewpoints

David Llobet; Judith Pallares; Maria Santacana; Nuria Eritja; Ana Velasco; Xavier Dolcet; Xavier Matias-Guiu

This article reviews the main molecular alterations involved in endometrial carcinoma. Five molecular features (microsatellite instability, and mutations in the PTEN, k-RAS, PIK3CA and β-catenin genes) are characteristic of endometrioid carcinomas, whereas non-endometrioid carcinomas show alterations of p53, loss of heterozygosity (LOH) on several chromosomes, as well as other molecular alterations (STK15, p16, E-cadherin and C-erb B2). The review also covers the phenomenon of apoptosis resistance, as well as the results obtained from cDNA array studies, and the perspectives for targeted therapies. A group of practical applications of molecular pathology techniques are also mentioned: diagnosis of hereditary non-polyposis colon cancer syndrome in patients with endometrial carcinoma; evaluation of precursor lesions; prognosis; diagnosis, particularly for synchronous endometrioid carcinomas of the uterus and the ovaries; and targeted therapies.


Modern Pathology | 2008

Promoter hypermethylation and reduced expression of RASSF1A are frequent molecular alterations of endometrial carcinoma.

Judit Pallares; Ana Velasco; Nuria Eritja; Maria Santacana; Xavier Dolcet; Miriam Cuatrecasas; Víctor Palomar-Asenjo; Lluis Catasús; Jaime Prat; Xavier Matias-Guiu

Alterations in the regulation of the RAS–MAPK pathway are frequent in endometrial carcinoma. RASSF1A is a tumor-suppressor gene that can regulate this pathway negatively. RASSF1A has been found to be inactivated by promoter methylation in some human tumors. The aim of the study was to assess the immunohistochemical expression of RASSF1A in normal endometrium and endometrial carcinoma, and to correlate its expression with K-RAS mutations, presence of microsatellite instability, RASSF1A promoter methylation, and clinicopathological data. RASSF1A immunostaining was evaluated in one tissue microarray constructed from 80 paraffin-embedded samples of normal endometrium, and two tissue microarrays constructed with a total of 157 endometrial carcinomas (one constructed with 95 endometrial carcinomas previously evaluated for K-RAS mutations, and microsatellite instability, and another one containing 62 endometrial carcinomas that were also subjected to RASSF1A promoter methylation analysis). RASSF1A immunostaining was correlated with cell proliferation (Ki67), Cyclin D1 expression and clinicopathological data. Promoter methylation of RASSF1A was assessed by methylation-specific PCR. RASSF1A immunostaining was variable during the menstrual cycle in normal endometrium. RASSF1A expression was significantly reduced in 48% of endometrial carcinomas, particularly in tumors exhibiting microsatellite instability. RASSF1A-promoter methylation was very frequent in endometrial carcinoma (74%), and was frequently associated with reduced expression of RASSF1A. RASSF1A-promoter hypermethylation was common in advanced-stage endometrial carcinoma. The results suggest that reduced expression of RASSF1A may play a role in endometrial carcinogenesis by controlling cell proliferation and apoptosis through the MAPK-signaling pathway.


Oncogene | 2008

CK2 controls TRAIL and Fas sensitivity by regulating FLIP levels in endometrial carcinoma cells.

David Llobet; Nuria Eritja; Mario Encinas; Nuria Llecha; Judit Pallares; Anabel Sorolla; F.J. Gonzalez-Tallada; Xavier Matias-Guiu; Xavier Dolcet

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising antineoplastic agent because of its ability to selectively kill tumoral cells. However, some cancer cells are resistant to TRAIL-induced apoptosis. We have previously demonstrated that in endometrial carcinoma cells such resistance is caused by elevated FLICE-inhibitory protein (FLIP) levels. The present study focuses on the mechanisms by which FLIP could be modulated to sensitize endometrial carcinoma cells to TRAIL-induced apoptosis. We find that inhibition of casein kinase (CK2) sensitizes endometrial carcinoma cells to TRAIL- and Fas-induced apoptosis. CK2 inhibition correlates with a reduction of FLIP protein, suggesting that CK2 regulates resistance to TRAIL and Fas by controlling FLIP levels. FLIP downregulation correlates with a reduction of mRNA and is prevented by addition of the MG-132, suggesting that CK2 inhibition results in a proteasome-mediated degradation of FLIP. Consistently, forced expression of FLIP restores resistance to TRAIL and Fas. Moreover, knockdown of either FADD or caspase-8 abrogates apoptosis triggered by inhibition of CK2, indicating that CK2 sensitization requires formation of functional DISC. Finally, because of the possible role of both TRAIL and CK2 in cancer therapy, we demonstrate that CK2 inhibition sensitizes primary endometrial carcinoma explants to TRAIL apoptosis. In conclusion, we demonstrate that CK2 regulates endometrial carcinoma cell sensitivity to TRAIL and Fas by regulating FLIP levels.


Anti-Cancer Drugs | 2008

Antioxidants block proteasome inhibitor function in endometrial carcinoma cells

David Llobet; Nuria Eritja; Mario Encinas; Anabel Sorolla; Joan Antoni Schoenenberger; Antonio Llombart-Cussac; Rosa M. Martí; Xavier Matias-Guiu; Xavier Dolcet

We have recently demonstrated that proteasome inhibitors can be effective in inducing apoptotic cell death in endometrial carcinoma cell lines and primary culture explants. Increasing evidence suggests that reactive oxygen species are responsible for proteasome inhibitor-induced cell killing. Antioxidants can thus block apoptosis (cell death) triggered by proteasome inhibition. Here, we have evaluated the effects of different antioxidants (edaravone and tiron) on endometrial carcinoma cells treated with aldehyde proteasome inhibitors (MG-132 or ALLN), the boronic acid-based proteasome inhibitor (bortezomib) and the epoxyketone, epoxomicin. We show that tiron specifically inhibited the cytotoxic effects of bortezomib, whereas edaravone inhibited cell death caused by aldehyde-based proteasome inhibitors. We have, however, found that edaravone completely inhibited accumulation of ubiquitin and proteasome activity decrease caused by MG-132 or ALLN, but not by bortezomib. Conversely, tiron inhibited the ubiquitin accumulation and proteasome activity decrease caused by bortezomib. These results suggest that edaravone and tiron rescue cells of proteasome inhibitors from cell death, by inhibiting blockade of proteasome caused by MG-132 and ALLN or bortezomib, respectively. We also tested other antioxidants, and we found that vitamin C inhibited bortezomib-induced cell death. Similar to tiron, vitamin C inhibited cell death by blocking the ability of bortezomib to inhibit the proteasome. Until now, all the antioxidants that blocked proteasome inhibitor-induced cell death also blocked the proteasome inhibitor mechanism of action.


European Journal of Cancer | 2010

The multikinase inhibitor Sorafenib induces apoptosis and sensitises endometrial cancer cells to TRAIL by different mechanisms

David Llobet; Nuria Eritja; Judith Pallares; Anabel Sorolla; Mónica Domingo; Maria Santacana; F.J. Gonzalez-Tallada; Xavier Matias-Guiu; Xavier Dolcet

Sorafenib induces apoptosis and enhances Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-induced cell killing of tumoural cells. We have investigated the effects of the multikinase inhibitor Sorafenib alone or in combination with TRAIL and agonistic Fas antibodies on endometrial carcinoma cells. We have also focused on the search of the differential molecular mechanisms by which Sorafenib induces cell death and the ones involved in sensitisation to TRAIL. In the present study, we show that Sorafenib induces apoptosis of both endometrial cancer cell lines and human primary cultures and sensitises these cells to TRAIL and agonistic Fas antibodies (aFas)-induced apoptosis. However, Raf/MEK/ERK inhibition by Sorafenib was not responsible for Sorafenib cell death or TRAIL sensitisation of endometrial cancer cells. Sorafenib treatment correlated with a downregulation of both FLICE-Inhibitory Protein (FLIP) and myeloid cell leukaemia-1 (Mcl-1), caused by a proteasomal degradation of both proteins. We evaluated the contribution of FLIP and Mcl-1 downregulation in apoptosis triggered by Sorafenib alone or Sorafenib plus TRAIL. Interestingly, cell death caused by Sorafenib was mediated by downregulation of Mcl-1, but not by FLIP. In contrast, we found that Sorafenib sensitisation of endometrial carcinoma cells to TRAIL- and Fas-induced apoptosis was dependent on FLIP but not on Mcl-1 downregulation. Altogether, we discern the dual mechanisms by which Sorafenib causes cell death from those involved in death receptor sensitisation.


American Journal of Pathology | 2010

A Novel Three-Dimensional Culture System of Polarized Epithelial Cells to Study Endometrial Carcinogenesis

Nuria Eritja; David Llobet; Mónica Domingo; Maria Santacana; Xavier Matias-Guiu; Xavi Dolcet

Development of three-dimensional (3D) cultures that mimic in vivo tissue organization has a pivotal role in the investigation of the involvement of cell adhesion and polarity genes in the pathogenesis of epithelial cancers. Here we describe a novel 3D culture model with primary mouse endometrial epithelial cells. In this model, isolated endometrial epithelial cells develop single-lumened, polarized glandular structures resembling those observed in endometrial tissue. Our in vitro 3D culture model of endometrial glands requires the use of serum-free defined medium with only epidermal growth factor and insulin as growth supplements and 3% Matrigel as reconstituted extracellular matrix. Under these culture conditions, glands of epithelial cells displaying typical apicobasal polarity and proper positioning of tight and adherent junctions are formed by hollowing as early as 7 to 8 days in culture. Addition of the phosphatidylinositol 3-kinase inhibitor LY294002 completely inhibits bromodeoxyuridine incorporation and cyclinD1 expression, confirming that in vitro growth of endometrial glands depends on phosphatidylinositol 3-kinase/Akt signaling. To prove that our culture method is a good model to study endometrial carcinogenesis, we knocked down E-cadherin or phosphatase and tensin homolog expression by lentivirus-delivered short hairpin RNAs. Down-regulation of E-cadherin resulted in complete loss of epithelial cell polarity and glandular formation, whereas phosphatase and tensin homolog down-regulation resulted in increased proliferation of glandular epithelial cells. These properties indicate that our 3D culture model is suitable to study the effect of growth factors, drugs, and gene alterations in endometrial carcinogenesis and to study normal endometrial biology/physiology.


American Journal of Pathology | 2009

CK2β Is Expressed in Endometrial Carcinoma and Has a Role in Apoptosis Resistance and Cell Proliferation

Judit Pallares; David Llobet; Maria Santacana; Nuria Eritja; Ana Velasco; Dolors Cuevas; Susana Ros López; Víctor Palomar-Asenjo; Xavier Dolcet; Xavier Matias-Guiu

Protein kinase CK2 (CK2) is a serine/threonine kinase that participates in important cellular processes. We have recently demonstrated that CK2 plays a role in resistance to TRAIL/Fas-induced apoptosis in endometrial carcinoma (EC) by regulating FLIP. Here, we assessed the immunohistochemical expression of CK2beta in EC and checked its role in cell proliferation and anchorage-independent cell growth. CK2beta immunostaining was assessed in two tissue microarrays, one constructed from paraffin-embedded blocks of 95 ECs and another from 70 samples of normal endometrium. CK2beta expression was correlated with histological type; grade and stage; cell proliferation (Ki-67) and apoptotic index; immunostaining for cyclin D1, PTEN, AKT, beta-catenin, and FLIP. Moreover, the Ishikawa EC cell line was subjected to down-regulation of CK2 by shRNA. CK2beta expression was frequent in EC (nuclear, 100%; cytoplasmic, 87.5%). The staining was more intense in EC than in normal endometrium (P = 0.000), and statistically correlated with AKT, PTEN, beta-catenin, and FLIP. In EC, CK2beta expression correlated with cell proliferation. Knock-down of CK2beta blocked colony formation of EC in soft agar, and also resulted in decreased expression of cyclin D1 and ERK phosphorylation. The results confirm that CK2beta is widely expressed in EC, and suggest a role in cell proliferation and anchorage-independent cell growth.


American Journal of Pathology | 2011

KSR1 Is Overexpressed in Endometrial Carcinoma and Regulates Proliferation and TRAIL-Induced Apoptosis by Modulating FLIP Levels

David Llobet; Nuria Eritja; Mónica Domingo; Laura Bergadà; Cristina Mirantes; Maria Santacana; Judit Pallares; Anna Macià; Mario Encinas; Gema Moreno-Bueno; José Palacios; Robert E. Lewis; Xavier Matias-Guiu; Xavi Dolcet

The Raf/MEK/extracellular signal-regulated kinase (ERK) pathway participates in many processes altered in development and progression of cancer in human beings such as proliferation, transformation, differentiation, and apoptosis. Kinase suppressor of Ras 1 (KSR1) can interact with various kinases of the Raf/MEK/extracellular signal-regulated kinase pathway to enhance its activation. The role of KSR1 in endometrial carcinogenesis was investigated. cDNA and tissue microarrays demonstrated that expression of KSR1 was up-regulated in endometrial carcinoma. Furthermore, inhibition of KSR1 expression by specific small hairpin RNA resulted in reduction of both proliferation and anchorage-independent cell growth properties of endometrial cancer cells. Because inhibition of apoptosis has a pivotal role in endometrial carcinogenesis, the effects of KSR1 in regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis were investigated. KSR1 knock-down sensitized resistant endometrial cell lines to both TRAIL- and Fas-induced apoptosis. Sensitization to TRAIL and agonistic anti-Fas antibody was caused by down-regulation of FLIP (FLICE-inhibitory protein). Also investigated was the molecular mechanism by which KSR1 regulates FLIP protein levels. It was demonstrated that KSR1 small hairpin RNA did not affect FLIP transcription or degradation. Rather, FLIP down-regulation was caused by Fas-associated death domain protein-dependent inhibition of FLIP translation triggered after TRAIL stimulation in KSR1-silenced cells. Re-expression of heterologous KSR1 in cells with down-regulated endogenous KSR1 restored FLIP protein levels and TRAIL resistance. In conclusion, KSR1 regulates endometrial sensitivity to TRAIL by regulating FLIP levels.


Human Pathology | 2008

Nuclear factor–κB activation is associated with somatic and germ line RET mutations in medullary thyroid carcinoma

Pilar Gallel; Judit Pallares; Xavier Dolcet; David Llobet; Nuria Eritja; Maria Santacana; Andre Yeramian; Víctor Palomar-Asenjo; Helena Lagarda; Didac Mauricio; Mario Encinas; Xavier Matias-Guiu

The nuclear factor-kappaB (NF-kappaB) family of transcription factors regulates a wide variety of cellular processes including cell growth, differentiation, and apoptosis. NF-kappaB has been shown to be activated through several signaling pathways that involve growth factor receptors. The aim of the study was to assess the immunohistochemical expression of members of the NF-kappaB family and the putative targets of NF-kappaB in a series of medullary thyroid carcinomas (MTCs), in correlation with RET mutational status. A tissue microarray was constructed from paraffin-embedded blocks of 48 MTCs (13 familial, 35 sporadic) previously evaluated for germ line and somatic RET mutations. Immunohistochemical evaluation included members of the NF-kappaB (p50, p65, p52, c-Rel, RelB) family, as well as putative targets of NF-kappaB such as Flip, Bcl-xL, and cyclin D1. Nuclear immunostaining for members of NF-kappaB was frequent in MTCs (p50, 19%; p65, 68%; p52, 86.6%; c-Rel, 75%; RelB, 36%). MTCs with germ line or somatic RET mutations (29 cases) showed NF-kappaB nuclear translocation (particularly of p65, P = .035) more frequently than MTCs without RET mutations (19 cases). Immunostaining for putative targets of NF-kappaB showed a significant statistical association between p65 and Bcl-xL (P = .024). In addition, Bcl-xL expression was statistically higher in the tumors with exon 16 RET mutation in comparison with those with exon 10 and 11 RET mutations or wild-type RET (P = .002). Moreover, the significance of RETsignaling in NF-kappaB activation was evaluated in the RET-mutated TT cell line. TT cells were infected with lentiviruses carrying short hairpin RNA to knock down RET expression, and NF-kappaB activity was assessed by luciferase reporter assays. Silencing of RET in the TT cell line produced a significant decrease in NF-kappaB activation and reduction in ERK1/2. The results suggest that the NF-kappaB is frequently activated in MTCs. The results also support the hypothesis that RET activation by somatic or germ line mutations may be responsible for NF-kappaB activation in MTCs.


Oncogene | 2013

Autophagy Restricts Proliferation Driven By Oncogenic Phosphatidylinositol 3-Kinase in Three-Dimensional Culture

Nan Chen; Nuria Eritja; Rebecca Lock; Jayanta Debnath

Autophagy is a tightly regulated lysosomal self-digestion process that can both promote and impede tumorigenesis. Here, we utilize a three-dimensional (3D) culture model to address how interactions between autophagy and the phosphatidylinositol 3-kinase(PI3K)/Akt/mammalian target of rapamycin pathway impact the malignant behavior of cells carrying a tumor-derived, activating mutation in PI3K (PI3K-H1047R). In this model, autophagy simultaneously mediates tumor-suppressive and -promoting functions within individual glandular structures. In 3D culture, constitutive PI3K activation overcomes proliferation arrest and promotes resistance to anoikis in the luminal space, resulting in aberrant structures with filled lumen. Inhibiting autophagy in PI3K-H1047R structures triggers luminal cell apoptosis, resulting in lumen clearance. At the same time, autophagy gene depletion strongly enhances PI3K-H1047R cell proliferation during 3D morphogenesis, revealing an unexpected role for autophagy in restricting proliferation driven by PI3K activation. Intriguingly, overexpression of the autophagy cargo receptor p62/SQSTM1 in PI3K-H1047R cells is sufficient to enhance cell proliferation, activate the extracellular signal-related kinase/mitogen-activated protein kinase pathway and to promote epidermal growth factor-independent proliferation in 3D culture. Overall, these results indicate that autophagy antagonizes specific aspects of oncogenic PI3K transformation, with the loss of autophagy promoting proliferation.

Collaboration


Dive into the Nuria Eritja's collaboration.

Top Co-Authors

Avatar

Xavier Matias-Guiu

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Maria Santacana

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Xavier Dolcet

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

David Llobet

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Cristina Mirantes

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Sonia Gatius

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Judit Pallares

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Mario Encinas

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Ana Velasco

Hospital Universitari Arnau de Vilanova

View shared research outputs
Top Co-Authors

Avatar

Anabel Sorolla

Hospital Universitari Arnau de Vilanova

View shared research outputs
Researchain Logo
Decentralizing Knowledge