Maria Soledad Peresin
VTT Technical Research Centre of Finland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Soledad Peresin.
Biomacromolecules | 2010
Maria Soledad Peresin; Youssef Habibi; Justin O. Zoppe; Joel J. Pawlak; Orlando J. Rojas
Cellulose nanocrystals (CN) were used to reinforce nanofibers in composite mats produced via electrospinning of poly(vinyl alcohol) (PVA) with two different concentrations of acetyl groups. Ultrathin cross-sections of the obtained nanocomposites consisted of fibers with maximum diameters of about 290 nm for all the CN loads investigated (from 0 to 15% CN loading). The electrospinning process did not affect the structure of the PVA polymer matrix, but its degree of crystallinity increased significantly together with a slight increase in the corresponding melting temperature. These effects were explained as being the result of alignment and enhanced crystallization of PVA chains within the individual nanofibers that were subjected to high shear stresses during electrospinning. The strong interaction of the PVA matrix with the dispersed CN phase, mainly via hydrogen bonding or bond network, was reduced with the presence of acetyl groups in PVA. Most importantly, the elastic modulus of the nanocomposite mats increased significantly as a consequence of the reinforcing effect of CNs via the percolation network held by hydrogen bonds. However, this organization-driven crystallization was limited as observed by the reduction in the degree of crystallinity of the CN-loaded composite fibers. Finally, efficient stress transfer and strong interactions were demonstrated to occur between the reinforcing CN and the fully hydrolyzed PVA electrospun fibers.
ACS Applied Materials & Interfaces | 2009
Justin O. Zoppe; Maria Soledad Peresin; Youssef Habibi; Richard A. Venditti; Orlando J. Rojas
We studied the use of cellulose nanocrystals (CNXs) obtained after acid hydrolysis of ramie cellulose fibers to reinforce poly(epsilon-caprolactone) (PCL) nanofibers. Chemical grafting with low-molecular-weight PCL diol onto the CNXs was carried out in an attempt to improve the interfacial adhesion with the fiber matrix. Grafting was confirmed via infrared spectroscopy and thermogravimetric analyses. The polymer matrix consisted of electrospun nanofibers that were collected as nonwoven webs. The morphology as well as thermal and mechanical properties of filled and unfilled nanofibers were elucidated by scanning electron microscopy, differential scanning calorimetry, and dynamic mechanical analysis, respectively. The addition of CNXs into PCL produced minimal changes in the thermal behavior of the electrospun fibers. However, a significant improvement in the mechanical properties of the nanofibers after reinforcement with unmodified CNXs was confirmed. Fiber webs from PCL reinforced with 2.5% unmodified CNXs showed ca. 1.5-fold increase in Youngs modulus and the ultimate strength compared to PCL webs. Compared to the case of grafted nanocrystals, the unmodified ones imparted better morphological homogeneity to the nanofibrillar structure. The grafted nanocrystals had a negative effect on the morphology of nonwoven webs in which individual nanofibers became annealed during the electrospinning process and, therefore, could not be compared to neat PCL nonwoven webs. A rationalization for the different effects of grafted and unmodified CNXs in reinforcing PCL nanofibers is provided.
Green Chemistry | 2015
Ester Rojo; Maria Soledad Peresin; W. W. Sampson; Ingrid Hoeger; Jari Vartiainen; Janne Laine; Orlando J. Rojas
We elucidate the effect of residual lignin on the interfacial, physical and mechanical properties of lignocellulose nanofibrils (LCNF) and respective nanopapers. Fibers containing ∼0, 2, 4, and 14 wt% residual lignin were microfluidized into LCNF aqueous suspensions and were processed into dry films (nanopapers). A systematic decrease in fibril diameter with increasing residual lignin was observed upon fibrillation, consistent with the radical scavenging ability of the lignin that results in better cell wall deconstruction. The stiff nature of the lignin-containing fibrils made them less able to conform during filtration and improved extensively dewatering, owing to a more open structure. However, the softening of the lignin during hot-pressing of the nanopapers and its amorphous nature enabled a binding effect, filling the voids between the nanofibers (thus reducing the number of micropores) and making the surface of the nanopapers smoother. The interfacial free energy of interaction changed drastically with the increased lignin content: the corresponding water contact angles were 35° and 78° for the lignin-free and for the (14%) lignin-containing nanopaper, respectively, revealing the increase in hydrophobicity. Together with the significantly less porous structure of LCNF nanopapers, lower water absorbency was observed with increased lignin content. Lignin in the nanopapers reduced the oxygen permeability by up to 200-fold. Water vapor permeability, in turn, did not correlate linearly with lignin content but depended most significantly on material density. The tensile strength, modulus, and strain for the LCNF nanopapers were found to be in the range 116–164 MPa, 10.5–14.3 GPa, and 1.7–3.5%, respectively. To a good degree of approximation, these mechanical properties were rather insensitive to lignin content and comparable to those of nanopapers derived from fully bleached CNF. Whilst it might be expected that lignin interferes in hydrogen bonding between fibrils, this was apparently counteracted by the uniform distribution of lignin seemingly aiding stress-transfer between fibrils and thus preserving mechanical properties. Overall, LCNF is demonstrated to be a suitable precursor of nanopaper, especially when reduced polarity and low hydrophilicity are desirable in related bio-products.
Carbohydrate Polymers | 2016
Paulina Mocchiutti; Carla N. Schnell; Gerardo D. Rossi; Maria Soledad Peresin; Miguel A. Zanuttini; María V. Galván
Cationic (CatPECs) and anionic (AnPECs) polyelectrolyte complexes from xylan and chitosan were formed, characterized and adsorbed onto unbleached fibers for improving the papermaking properties. They were prepared at a level of 30% of neutralization charge ratio by modifying the order of addition of polyelectrolytes and the ionic strength (0.01N and 0.1N NaCl). The charge density, colloidal stability and particle size of polyelectrolyte complexes (PECs) was measured using polyelectrolyte titration method, Turbiscan and Zetasizer Nano equipments, respectively. All the complexes were stable even after seven days from PEC formation. DRIFT spectra of complexes were also analyzed. The adsorption behavior of them onto cellulose nanofibrils model surfaces was studied using quartz crystal microbalance with dissipation monitoring, and surface plasmon resonance. It was found that the PEC layers were viscoelastic and highly hydrated. Finally, it is shown that the adsorbed PECs onto cellulosic fibers markedly improved the tensile and crushing strengths of paper.
Carbohydrate Polymers | 2015
Paulina Mocchiutti; María V. Galván; Maria Soledad Peresin; Carla N. Schnell; Miguel A. Zanuttini
In this work, polyelectrolyte complexes (PECs) were formed by adding polyacrylic acid (PAA) or 4-O-methylglucuronoxylan (Xyl) on poly(allylamine hydrochloride) (PAH) solutions, at different ionic strength and neutral pH. Turbidity curves, charge densities of the cationic complexes determined by polyelectrolyte titration method, and z-potential values showed clear differences between both complexes. Stirring favourably reverses the effects of sedimentation of Xyl/PAH complexes, as demonstrated by colloidal stability tests. Adsorption studies on silica surfaces, performed by Quartz Crystal Microbalance with Dissipation (QCM-D) showed that PAA/PAH adsorbed complexes layers were rigid, while the corresponding Xyl/PAH layers were viscoelastic. Despite the different conformations, both complexes were adsorbed as spherical particles, as observed by Atomic Force Microscopy (AFM). Adsorption isotherms performed on fibre suspensions showed that the ionic strength of the liquid medium determines the amount of PEC retained. Finally, it was found that the papermaking properties were significantly increased due to the addition of these PECs.
International Journal of Biological Macromolecules | 2018
Juan Domínguez-Robles; Tarja Tamminen; Tiina Liitiä; Maria Soledad Peresin; Alejandro Rodríguez; Anna-Stiina Jääskeläinen
Technical lignins are structurally heterogeneous and polydisperse. This work describes the use of a simple and green method for lignin fractionation, using different proportions of acetone (40 and 60%) in water. Lignins from three different sources (wheat straw organosolv lignin, wheat straw soda lignin and softwood kraft lignin) were used in this fractionation protocol. The obtained fractions showed different molar mass and functional groups. The lower molar mass fractions showed more phenolic hydroxyl groups and carboxylic acid moieties than higher molar mass fractions, which also possessed much higher amounts of carbohydrates. The chemical characterization of these fractionated lignins showed that the PREC fraction was exceptionally pure and homogeneous lignin. Its total lignin content was >96% for all three lignins and it was practically free from carbohydrates and inorganics (ash). Furthermore, PREC fraction possessed the highest carbon content for the three lignin samples (63.05-69.26%). These results illustrate that the proposed aqueous acetone fractionation protocol could indeed produce pure and uniform lignin fraction and it was applicable for lignins from different sources.
Carbohydrate Polymers | 2017
Maria Soledad Peresin; Kari Kammiovirta; Harri Heikkinen; Leena-Sisko Johansson; Jari Vartiainen; Harri Setälä; Monika Österberg; Tekla Tammelin
A concept for direct surface modification on self-standing films of cellulose nanofibrils (CNF) is demonstrated using an aminosilane group in cellulose compatible solvent (dimethyl acetamide, DMA). The chemically modified structure efficiently prevents the oxygen molecules from interacting with the nanocellulose film in the presence of water molecules. Oxygen permeability values lower than 1mLmmm-2day-1atm-1 were achieved at extremely high levels of relative humidity (RH95%). The aminosilane reaction is compared to conventional hydrophobization reaction using hexamethyldisilazane. The differences with respect to interactions between cellulosic nanofibrils, water and oxygen molecules taking place with aminated and silylated CNF films correlated with the degree of surface substitution, surface hydrophilicity and permeability of the formed layer. The self-condensation reactions taking place on the film surface during aminosilane-mediated bonding were decisive for low oxygen permeability. Experimental evidence on the importance of interfacial processes that hinder the water-cellulose interactions while keeping films low affinity towards oxygen is demonstrated.
Cellulose | 2018
Yurany Villada; María Celeste Iglesias; Natalia Casis; Eleonora Erdmann; Maria Soledad Peresin; Diana A. Estenoz
In this work, the potential replacement of xanthan gum (XGD) by cellulose nanofibrils in the composition of water based muds (WBMs) was studied. Bleached (B-CNF) and unbleached (L-CNF) cellulose nanofibrils, mainly differentiated by their lignin content, were tested and their performances were compared with that of XGD. The effects of cellulose nanofibrils on the rheological and filtration properties of WBMs were investigated. Rheometric analysis showed a shear-thinning behavior more noticeable for fluids containing B-CNF and XGD, while filtration properties were improved using L-CNF. The Sisko model was used to determine rheological parameters. Finally, it was found that by replacing XGD by double concentration of L-CNF in a WBM for Argentina shale, similar rheological properties were obtained. Structural changes were assessed by using Scanning Electron Microscopy (SEM). Particles agglomeration and good film formability were observed. Furthermore, WBMs with lignin-containing cellulose nanofibrils exhibited a better thermal stability after aging.Graphical abstract
Journal of Polymers and The Environment | 2012
María Evangelina Vallejos; Maria Soledad Peresin; Orlando J. Rojas
Reactive & Functional Polymers | 2014
Tiia Maria Tenhunen; Maria Soledad Peresin; Paavo A. Penttilä; Jaakko Pere; Ritva Serimaa; Tekla Tammelin