Maria Stella Grando
University of Trento
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Stella Grando.
BMC Plant Biology | 2008
Laura Costantini; Juri Battilana; Flutura Lamaj; G. Fanizza; Maria Stella Grando
BackgroundThe timing of grape ripening initiation, length of maturation period, berry size and seed content are target traits in viticulture. The availability of early and late ripening varieties is desirable for staggering harvest along growing season, expanding production towards periods when the fruit gets a higher value in the market and ensuring an optimal plant adaptation to climatic and geographic conditions. Berry size determines grape productivity; seedlessness is especially demanded in the table grape market and is negatively correlated to fruit size. These traits result from complex developmental processes modified by genetic, physiological and environmental factors. In order to elucidate their genetic determinism we carried out a quantitative analysis in a 163 individuals-F1 segregating progeny obtained by crossing two table grape cultivars.ResultsMolecular linkage maps covering most of the genome (2n = 38 for Vitis vinifera) were generated for each parent. Eighteen pairs of homologous groups were integrated into a consensus map spanning over 1426 cM with 341 markers (mainly microsatellite, AFLP and EST-derived markers) and an average map distance between loci of 4.2 cM. Segregating traits were evaluated in three growing seasons by recording flowering, veraison and ripening dates and by measuring berry size, seed number and weight. QTL (Quantitative Trait Loci) analysis was carried out based on single marker and interval mapping methods. QTLs were identified for all but one of the studied traits, a number of them steadily over more than one year. Clusters of QTLs for different characters were detected, suggesting linkage or pleiotropic effects of loci, as well as regions affecting specific traits. The most interesting QTLs were investigated at the gene level through a bioinformatic analysis of the underlying Pinot noir genomic sequence.ConclusionOur results revealed novel insights into the genetic control of relevant grapevine features. They provide a basis for performing marker-assisted selection and testing the role of specific genes in trait variation.
BMC Plant Biology | 2010
Francesco Emanuelli; Juri Battilana; Laura Costantini; Loïc Le Cunff; Jean-Michel Boursiquot; Patrice This; Maria Stella Grando
BackgroundThe sweet, floral flavor typical of Muscat varieties (Muscats), due to high levels of monoterpenoids (geraniol, linalool and nerol), is highly distinct and has been greatly appreciated both in table grapes and in wine since ancient times. Muscat flavor determination in grape (Vitis vinifera L.) has up to now been studied by evaluating monoterpenoid levels through QTL analysis. These studies have revealed co-localization of 1-deoxy-D-xylulose 5-phosphate synthase (VvDXS) with the major QTL positioned on chromosome 5.ResultsWe resequenced VvDXS in an ad hoc association population of 148 grape varieties, which included muscat-flavored, aromatic and neutral accessions as well as muscat-like aromatic mutants and non-aromatic offsprings of Muscats. Gene nucleotide diversity and intragenic linkage disequilibrium (LD) were evaluated. Structured association analysis revealed three SNPs in moderate LD to be significantly associated with muscat-flavored varieties. We identified a putative causal SNP responsible for a predicted non-neutral substitution and we discuss its possible implications for flavor metabolism. Network analysis revealed a major star-shaped cluster of reconstructed haplotypes unique to muscat-flavored varieties. Moreover, muscat-like aromatic mutants displayed unique non-synonymous mutations near the mutated site of Muscat genotypes.ConclusionsThis study is a crucial step forward in understanding the genetic regulation of muscat flavor in grapevine and it also sheds light on the domestication history of Muscats. VvDXS appears to be a possible human-selected locus in grapevine domestication and post-domestication. The putative causal SNP identified in Muscat varieties as well as the unique mutations identifying the muscat-like aromatic mutants under study may be immediately applied in marker-assisted breeding programs aimed at enhancing fragrance and aroma complexity respectively in table grape and wine cultivars.
Journal of Experimental Botany | 2011
Juri Battilana; Francesco Emanuelli; Giorgio Gambino; Ivana Gribaudo; Flavia Gasperi; Paul K. Boss; Maria Stella Grando
Grape berries of Muscat cultivars (Vitis vinifera L.) contain high levels of monoterpenols and exhibit a distinct aroma related to this composition of volatiles. A structural gene of the plastidial methyl-erythritol-phosphate (MEP) pathway, 1-deoxy-D-xylulose 5-phosphate synthase (VvDXS), was recently suggested as a candidate gene for this trait, having been co-localized with a major quantitative trait locus for linalool, nerol, and geraniol concentrations in berries. In addition, a structured association study discovered a putative causal single nucleotide polymorphism (SNP) responsible for the substitution of a lysine with an asparagine at position 284 of the VvDXS protein, and this SNP was significantly associated with Muscat-flavoured varieties. The significance of this nucleotide difference was investigated by comparing the monoterpene profiles with the expression of VvDXS alleles throughout berry development in Moscato Bianco, a cultivar heterozygous for the SNP mutation. Although correlation was detected between the VvDXS transcript profile and the accumulation of free monoterpenol odorants, the modulation of VvDXS expression during berry development appears to be independent of nucleotide variation in the coding sequence. In order to assess how the non-synonymous mutation may enhance Muscat flavour, an in vitro characterization of enzyme isoforms was performed followed by in vivo overexpression of each VvDXS allele in tobacco. The results showed that the amino acid non-neutral substitution influences the enzyme kinetics by increasing the catalytic efficiency and also dramatically affects monoterpene levels in transgenic lines. These findings confirm a functional effect of the VvDXS gene polymorphism and may pave the way for metabolic engineering of terpenoid contents in grapevine.
Journal of Experimental Botany | 2015
Laura Costantini; Giulia Malacarne; Silvia Lorenzi; Michela Troggio; Fulvio Mattivi; Claudio Moser; Maria Stella Grando
Highlight The integration of metabolic, molecular marker, and transcriptomic data from a segregating grapevine progeny provides novel insights into the genetic control of anthocyanin content and composition in ripe berries.
Journal of Experimental Botany | 2015
Giulia Malacarne; Laura Costantini; Emanuela Coller; Juri Battilana; Riccardo Velasco; Urska Vrhovsek; Maria Stella Grando; Claudio Moser
Highlight Novel candidate genes for the fine regulation of flavonol content in ripe berries are identified through integration of transcriptional profiling and metabolic QTL analyses of a segregating grapevine progeny.
BMC Genomics | 2014
Chinedu Charles Nwafor; Ivana Gribaudo; A. Schneider; Ron Wehrens; Maria Stella Grando; Laura Costantini
BackgroundSeedless grapes are greatly appreciated for fresh and dry fruit consumption. Parthenocarpy and stenospermocarpy have been described as the main phenomena responsible for seedlessness in Vitis vinifera. However, the key genes underpinning molecular and cellular processes that play a significant role in seed development are not well characterized. To identify important regulators and mechanisms that may be altered in the seedless phenotype, we performed a comprehensive transcriptional analysis to compare the transcriptomes of a popular seeded wine cultivar (wild-type) and its seedless somatic variant (mutant) at three key developmental stages.ResultsThe transcriptomes revealed by Illumina mRNA-Seq technology had approximately 98% of grapevine annotated transcripts and about 80% of them were commonly expressed in the two lines. Differential gene expression analysis revealed a total of 1075 differentially expressed genes (DE) in the pairwise comparison of developmental stages, which included DE genes specific to the wild-type background, DE genes specific to the mutant background and DE genes commonly shared in both backgrounds. The analysis of differential expression patterns and functional category enrichment of wild-type and mutant DE genes highlighted significant coordination and enrichment of pollen and ovule developmental pathways. The expression of some selected DE genes was further confirmed by real-time RT-PCR analysis.ConclusionsThis study represents the most comprehensive attempt to characterize the genetic bases of seed formation in grapevine. With a high throughput method, we have shown that a seeded wine grape and its seedless somatic variant are similar in several biological processes. Nevertheless, we could identify an inventory of genes with altered expression in the mutant compared to the wild-type, which may be responsible for the seedless phenotype. The genes located within known genomic regions regulating seed content may be used for the development of molecular tools to assist table grape breeding. Therefore the data reported here have provided a rich genomic resource for practical use and functional characterization of the genes that potentially underpin seedlessness in grapevine.
Frontiers in Plant Science | 2016
Marco Moretto; Paolo Sonego; Stefania Pilati; Giulia Malacarne; Laura Costantini; Lukasz Grzeskowiak; Giorgia Bagagli; Maria Stella Grando; Claudio Moser; Kristof Engelen
Large-scale transcriptional studies aim to decipher the dynamic cellular responses to a stimulus, like different environmental conditions. In the era of high-throughput omics biology, the most used technologies for these purposes are microarray and RNA-Seq, whose data are usually required to be deposited in public repositories upon publication. Such repositories have the enormous potential to provide a comprehensive view of how different experimental conditions lead to expression changes, by comparing gene expression across all possible measured conditions. Unfortunately, this task is greatly impaired by differences among experimental platforms that make direct comparisons difficult. In this paper, we present the Vitis Expression Studies Platform Using COLOMBOS Compendia Instances (VESPUCCI), a gene expression compendium for grapevine which was built by adapting an approach originally developed for bacteria, and show how it can be used to investigate complex gene expression patterns. We integrated nearly all publicly available microarray and RNA-Seq expression data: 1608 gene expression samples from 10 different technological platforms. Each sample has been manually annotated using a controlled vocabulary developed ad hoc to ensure both human readability and computational tractability. Expression data in the compendium can be visually explored using several tools provided by the web interface or can be programmatically accessed using the REST interface. VESPUCCI is freely accessible at http://vespucci.colombos.fmach.it.
PLOS ONE | 2017
Annarita Marrano; Giovanni Birolo; Maria Lucia Prazzoli; Silvia Lorenzi; Giorgio Valle; Maria Stella Grando
Whole-genome comparisons of Vitis vinifera subsp. sativa and V. vinifera subsp. sylvestris are expected to provide a better estimate of the valuable genetic diversity still present in grapevine, and help to reconstruct the evolutionary history of a major crop worldwide. To this aim, the increase of molecular marker density across the grapevine genome is fundamental. Here we describe the SNP discovery in a grapevine germplasm collection of 51 cultivars and 44 wild accessions through a novel protocol of restriction-site associated DNA (RAD) sequencing. By resequencing 1.1% of the grapevine genome at a high coverage, we recovered 34K BamHI unique restriction sites, of which 6.8% were absent in the ‘PN40024’ reference genome. Moreover, we identified 37,748 single nucleotide polymorphisms (SNPs), 93% of which belonged to the 19 assembled chromosomes with an average of 1.8K SNPs per chromosome. Nearly half of the SNPs fell in genic regions mostly assigned to the functional categories of metabolism and regulation, whereas some nonsynonymous variants were identified in genes related with the detection and response to environmental stimuli. SNP validation was carried-out, showing the ability of RAD-seq to accurately determine genotypes in a highly heterozygous species. To test the usefulness of our SNP panel, the main diversity statistics were evaluated, highlighting how the wild grapevine retained less genetic variability than the cultivated form. Furthermore, the analysis of Linkage Disequilibrium (LD) in the two subspecies separately revealed how the LD decays faster within the domesticated grapevine compared to its wild relative. Being the first application of RAD-seq in a diverse grapevine germplasm collection, our approach holds great promise for exploiting the genetic resources available in one of the most economically important fruit crops.
Journal of Agricultural and Food Chemistry | 2016
Valentina Catalano; Paula Moreno-Sanz; Silvia Lorenzi; Maria Stella Grando
The genetic varietal authentication of wine was investigated according to DNA isolation procedures reported for enological matrices and also by testing 11 commercial extraction kits and various protocol modifications. Samples were collected at different stages of the winemaking process of renowned Italian wines Brunello di Montalcino, Lambruschi Modenesi, and Trento DOC. Results demonstrated not only that grape DNA loss is produced by the fermentation process but also that clarification and stabilization operations contribute to the reduction of double-stranded DNA content on wine. Despite the presence of inhibitors, downstream PCR genotyping yielded reliable nuclear and chloroplast SSR markers for must samples, whereas no amplification or inconsistent results were obtained at later stages of the vinification. In addition, a TaqMan genotyping assay based on cultivar-specific single-nucleotide polymorphisms (SNPs) was designed, which allowed assessment of grapevine DNA mixtures. Once the wine matrix limitations are overcome, this sensitive tool may be implemented for the relative quantification of cultivars used for blend wines or frauds.
Frontiers in Plant Science | 2017
Laura Costantini; Christian Kappel; M. Trenti; Juri Battilana; Francesco Emanuelli; Maddalena Sordo; Marco Moretto; Céline Camps; Roberto Larcher; Serge Delrot; Maria Stella Grando
Monoterpenes confer typical floral notes to “Muscat” grapevine varieties and, to a lesser extent, to other aromatic non-Muscat varieties. Previous studies have led to the identification and functional characterization of some enzymes and genes in this pathway. However, the underlying genetic map is still far from being complete. For example, the specific steps of monoterpene metabolism and its regulation are largely unknown. With the aim of identifying new candidates for the missing links, we applied an integrative functional genomics approach based on the targeted metabolic and genome-wide transcript profiling of Moscato Bianco ripening berries. In particular, gas chromatography-mass spectrometry analysis of free and bound terpenoid compounds was combined with microarray analysis in the skins of berries collected at five developmental stages from pre-veraison to over-ripening. Differentially expressed metabolites and probes were identified in the pairwise comparison between time points by using the early stage as a reference. Metabolic and transcriptomic data were integrated through pairwise correlation and clustering approaches to discover genes linked with particular metabolites or groups of metabolites. These candidate transcripts were further checked for co-localization with quantitative trait loci (QTLs) affecting aromatic compounds. Our findings provide insights into the biological networks of grapevine secondary metabolism, both at the catalytic and regulatory levels. Examples include a nudix hydrolase as component of a terpene synthase-independent pathway for monoterpene biosynthesis, genes potentially involved in monoterpene metabolism (cytochrome P450 hydroxylases, epoxide hydrolases, glucosyltransferases), transport (vesicle-associated proteins, ABCG transporters, glutathione S-transferases, amino acid permeases), and transcriptional control (transcription factors of the ERF, MYB and NAC families, intermediates in light- and circadian cycle-mediated regulation with supporting evidence from the literature and additional regulatory genes with a previously unreported association to monoterpene accumulation).