Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Sueli Soares Felipe is active.

Publication


Featured researches published by Maria Sueli Soares Felipe.


Journal of Bacteriology | 2005

Swine and Poultry Pathogens: the Complete Genome Sequences of Two Strains of Mycoplasma hyopneumoniae and a Strain of Mycoplasma synoviae

Ana Tereza R. Vasconcelos; Henrique Bunselmeyer Ferreira; Cristiano Valim Bizarro; Sandro L. Bonatto; Marcos Oliveira de Carvalho; Paulo Marcos Pinto; Darcy F. de Almeida; Luiz G. P. Almeida; Rosana Almeida; Leonardo Alves-Filho; E. Assunção; Vasco Azevedo; Maurício Reis Bogo; Marcelo M. Brigido; Marcelo Brocchi; Helio A. Burity; Anamaria A. Camargo; Sandro da Silva Camargo; Marta Sofia Peixe Carepo; Dirce M. Carraro; Júlio C. de Mattos Cascardo; Luiza Amaral de Castro; Gisele Cavalcanti; Gustavo Chemale; Rosane G. Collevatti; Cristina W. Cunha; Bruno Dallagiovanna; Bibiana Paula Dambrós; Odir A. Dellagostin; Clarissa Falcão

This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability

Ana Tereza Ribeiro de Vasconcelos; Darcy F. De Almeida; Mariangela Hungria; Claudia Teixeira Guimarães; Regina Vasconcellos Antônio; Francisca Cunha Almeida; Luiz G.P. De Almeida; Rosana Almeida; José Antonio Alves-Gomes; Elizabeth M. Mazoni Andrade; Júlia Rolão Araripe; Magnólia Fernandes Florêncio de Araújo; Spartaco Astolfi-Filho; Vasco Azevedo; Alessandra Jorge Baptistà; Luiz Artur Mendes Bataus; Jacqueline da Silva Batista; André Beló; Cássio van den Berg; Maurício Reis Bogo; Sandro L. Bonatto; Juliano Bordignon; Marcelo M. Macedo Brigidom; Cristiana A. Alves Brito; Marcelo Brocchi; Hélio Almeida Burity; Anamaria A. Camargo; Divina das Dôres de Paula Cardoso; N. P. Carneiro; Dirce Maria Carraro

Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) widespread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.


Infection and Immunity | 2006

Glyceraldehyde-3-Phosphate Dehydrogenase of Paracoccidioides brasiliensis Is a Cell Surface Protein Involved in Fungal Adhesion to Extracellular Matrix Proteins and Interaction with Cells

Mônica Santiago Barbosa; Sônia Nair Báo; Patrícia Ferrari Andreotti; Fabrícia P. de Faria; Maria Sueli Soares Felipe; Luciano dos Santos Feitosa; Maria José Soares Mendes-Giannini; Célia Maria de Almeida Soares

ABSTRACT The pathogenic fungus Paracoccidioides brasiliensis causes paracoccidioidomycosis, a pulmonary mycosis acquired by inhalation of fungal airborne propagules, which may disseminate to several organs and tissues, leading to a severe form of the disease. Adhesion to and invasion of host cells are essential steps involved in the infection and dissemination of pathogens. Furthermore, pathogens use their surface molecules to bind to host extracellular matrix components to establish infection. Here, we report the characterization of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of P. brasiliensis as an adhesin, which can be related to fungus adhesion and invasion. The P. brasiliensis GAPDH was overexpressed in Escherichia coli, and polyclonal antibody against this protein was obtained. By immunoelectron microscopy and Western blot analysis, GAPDH was detected in the cytoplasm and the cell wall of the yeast phase of P. brasiliensis. The recombinant GAPDH was found to bind to fibronectin, laminin, and type I collagen in ligand far-Western blot assays. Of special note, the treatment of P. brasiliensis yeast cells with anti-GAPDH polyclonal antibody and the incubation of pneumocytes with the recombinant protein promoted inhibition of adherence and internalization of P. brasiliensis to those in vitro-cultured cells. These observations indicate that the cell wall-associated form of the GAPDH in P. brasiliensis could be involved in mediating binding of fungal cells to fibronectin, type I collagen, and laminin, thus contributing to the adhesion of the microorganism to host tissues and to the dissemination of infection.


PLOS Neglected Tropical Diseases | 2013

Phylogenetic Analysis Reveals a High Prevalence of Sporothrix brasiliensis in Feline Sporotrichosis Outbreaks

Anderson Messias Rodrigues; Marcus de Melo Teixeira; G. Sybren de Hoog; Tânia Maria Pacheco Schubach; Sandro Antonio Pereira; Geisa Ferreira Fernandes; Leila Maria Lopes Bezerra; Maria Sueli Soares Felipe; Zoilo Pires de Camargo

Sporothrix schenckii, previously assumed to be the sole agent of human and animal sporotrichosis, is in fact a species complex. Recently recognized taxa include S. brasiliensis, S. globosa, S. mexicana, and S. luriei, in addition to S. schenckii sensu stricto. Over the last decades, large epidemics of sporotrichosis occurred in Brazil due to zoonotic transmission, and cats were pointed out as key susceptible hosts. In order to understand the eco-epidemiology of feline sporotrichosis and its role in human sporotrichosis a survey was conducted among symptomatic cats. Prevalence and phylogenetic relationships among feline Sporothrix species were investigated by reconstructing their phylogenetic origin using the calmodulin (CAL) and the translation elongation factor-1 alpha (EF1α) loci in strains originated from Rio de Janeiro (RJ, n = 15), Rio Grande do Sul (RS, n = 10), Paraná (PR, n = 4), São Paulo (SP, n = 3) and Minas Gerais (MG, n = 1). Our results showed that S. brasiliensis is highly prevalent among cats (96.9%) with sporotrichosis, while S. schenckii was identified only once. The genotype of Sporothrix from cats was found identical to S. brasiliensis from human sources confirming that the disease is transmitted by cats. Sporothrix brasiliensis presented low genetic diversity compared to its sister taxon S. schenckii. No evidence of recombination in S. brasiliensis was found by split decomposition or PHI-test analysis, suggesting that S. brasiliensis is a clonal species. Strains recovered in states SP, MG and PR share the genotype of the RJ outbreak, different from the RS clone. The occurrence of separate genotypes among strains indicated that the Brazilian S. brasiliensis epidemic has at least two distinct sources. We suggest that cats represent a major host and the main source of cat and human S. brasiliensis infections in Brazil.


Yeast | 2003

Transcriptome characterization of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis by EST analysis

Maria Sueli Soares Felipe; Rosângela V. Andrade; S. S. Petrofeza; Andrea Queiroz Maranhão; Fernando Araripe Gonçalves Torres; P. Albuquerque; Fabrício Barbosa Monteiro Arraes; M. Arruda; Maristela O. Azevedo; A. J. Baptista; L. A. M. Bataus; C. L. Borges; Élida G. Campos; M. R. Cruz; Bruno S. Daher; A. Dantas; M. A. S. V. Ferreira; G. V. Ghil; Rosália Santos Amorim Jesuíno; Cynthia Maria Kyaw; L. Leitão; C. R. Martins; Lidia Maria Pepe de Moraes; E. O. Neves; André Moraes Nicola; E. S. Alves; Juliana Alves Parente; Maristela Pereira; Marcio José Poças-Fonseca; R. Resende

Paracoccidioides brasiliensis is a pathogenic fungus that undergoes a temperature‐dependent cell morphology change from mycelium (22° C) to yeast (36° C). It is assumed that this morphological transition correlates with the infection of the human host. Our goal was to identify genes expressed in the mycelium (M) and yeast (Y) forms by EST sequencing in order to generate a partial map of the fungus transcriptome. Individual EST sequences were clustered by the CAP3 program and annotated using Blastx similarity analysis and InterPro Scan. Three different databases, GenBank nr, COG (clusters of orthologous groups) and GO (gene ontology) were used for annotation. A total of 3938 (Y = 1654 and M = 2274) ESTs were sequenced and clustered into 597 contigs and 1563 singlets, making up a total of 2160 genes, which possibly represent one‐quarter of the complete gene repertoire in P. brasiliensis. From this total, 1040 were successfully annotated and 894 could be classified in 18 functional COG categories as follows: cellular metabolism (44%); information storage and processing (25%); cellular processes—cell division, posttranslational modifications, among others (19%); and genes of unknown functions (12%). Computer analysis enabled us to identify some genes potentially involved in the dimorphic transition and drug resistance. Furthermore, computer subtraction analysis revealed several genes possibly expressed in stage‐specific forms of P. brasiliensis. Further analysis of these genes may provide new insights into the pathology and differentiation of P. brasiliensis. All EST sequences have been deposited in GenBank under Accession Nos CA580326–CA584263. Copyright


Fungal Genetics and Biology | 2008

New Paracoccidioides brasiliensis isolate reveals unexpected genomic variability in this human pathogen

Lilia L. Carrero; Gustavo Niño-Vega; Marcus de Melo Teixeira; Maria José A. Carvalho; Célia Maria de Almeida Soares; Maristela Pereira; Rosália Santos Amorim Jesuíno; Juan G. McEwen; Leonel Mendoza; John W. Taylor; Maria Sueli Soares Felipe; Gioconda San-Blas

By means of genealogical concordance phylogenetic species recognition (GCPSR), we have investigated coding and non-coding regions from various genes and the ITS sequences of 7 new and 14 known isolates of Paracoccidioides brasiliensis. Such isolates grouped within the three phylogenetic groups recently reported in the genus Paracoccidioides, with one single exception, i.e., Pb01, a strain that has been the subject of intense molecular studies for many years. This isolate clearly separates from all other Paracoccidioides isolates in phylogenetic analyses and greatly increases the genomic variation known in this genus.


PLOS Genetics | 2011

Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis

Christopher A. Desjardins; Mia D. Champion; Jason W. Holder; Anna Muszewska; Jonathan M. Goldberg; Alexandre M. Bailão; Marcelo M. Brigido; Márcia Eliana da Silva Ferreira; Ana Maria Garcia; Marcin Grynberg; Sharvari Gujja; David I. Heiman; Matthew R. Henn; Chinnappa D. Kodira; Henry León-Narváez; Larissa V. G. Longo; Li-Jun Ma; Iran Malavazi; Alisson L. Matsuo; Flavia V. Morais; Maristela Pereira; Sabrina Rodríguez-Brito; Sharadha Sakthikumar; Silvia Maria Salem-Izacc; Sean Sykes; Marcus de Melo Teixeira; Milene C. Vallejo; Maria Emilia Telles Walter; Chandri Yandava; Qiandong Zeng

Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.


Molecular Microbiology | 1999

Differential expression of an hsp70 gene during transition from the mycelial to the infective yeast form of the human pathogenic fungus Paracoccidioides brasiliensis

Silvana Petrofeza Da Silva; Maria Ines Borges‐Walmsley; Ildinete Silva Pereira; Célia Maria de Almeida Soares; Adrian R. Walmsley; Maria Sueli Soares Felipe

We have isolated and characterized cDNA and genomic clones that encode a 70 kDa heat shock protein (Hsp70) from the dimorphic human pathogenic fungus Paracoccidioides brasiliensis. The gene encodes a 649‐amino‐acid protein showing high identity with other members of the hsp70 gene family. The hsp70 gene is induced during both heat shock of yeast cells at 42°C and the mycelial to yeast transition. A differential expression of this gene can be observed between mycelial and yeast forms, with a much higher level of expression in the yeast. We found two introns of 178 and 72 nucleotides in the P. brasiliensis hsp70 gene. Splicing of these introns is regulated during the heat shock process and possibly during infection. In order to analyse the differential accumulation of unspliced mRNA following cellular differentiation and/or heat shock, reverse transcriptase–polymerase chain reaction (RT–PCR) experiments were carried out. The temperature‐induced mycelial to yeast transition results in the transient accumulation of unspliced hsp70 mRNA transcripts. Yeast cells, after adaptation at 36°C, seem to be more proficient at splicing, at least with respect to hsp70 mRNA because, during a severe heat shock (42°C), the unspliced form of this mRNA does not accumulate. The mycelial to yeast differentiation will have the adaptational effect of increasing the resistance of the organism to environmental stress, which may be necessary for parasite survival in the mammalian host.


BMC Genomics | 2011

Comparative genomics allowed the identification of drug targets against human fungal pathogens.

Ana Karina Rodrigues Abadio; Erika Seki Kioshima; Marcus de Melo Teixeira; Natália F. Martins; Bernard Maigret; Maria Sueli Soares Felipe

BackgroundThe prevalence of invasive fungal infections (IFIs) has increased steadily worldwide in the last few decades. Particularly, there has been a global rise in the number of infections among immunosuppressed people. These patients present severe clinical forms of the infections, which are commonly fatal, and they are more susceptible to opportunistic fungal infections than non-immunocompromised people. IFIs have historically been associated with high morbidity and mortality, partly because of the limitations of available antifungal therapies, including side effects, toxicities, drug interactions and antifungal resistance. Thus, the search for alternative therapies and/or the development of more specific drugs is a challenge that needs to be met. Genomics has created new ways of examining genes, which open new strategies for drug development and control of human diseases.ResultsIn silico analyses and manual mining selected initially 57 potential drug targets, based on 55 genes experimentally confirmed as essential for Candida albicans or Aspergillus fumigatus and other 2 genes (kre2 and erg6) relevant for fungal survival within the host. Orthologs for those 57 potential targets were also identified in eight human fungal pathogens (C. albicans, A. fumigatus, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Paracoccidioides lutzii, Coccidioides immitis, Cryptococcus neoformans and Histoplasma capsulatum). Of those, 10 genes were present in all pathogenic fungi analyzed and absent in the human genome. We focused on four candidates: trr1 that encodes for thioredoxin reductase, rim8 that encodes for a protein involved in the proteolytic activation of a transcriptional factor in response to alkaline pH, kre2 that encodes for α-1,2-mannosyltransferase and erg6 that encodes for Δ(24)-sterol C-methyltransferase.ConclusionsOur data show that the comparative genomics analysis of eight fungal pathogens enabled the identification of four new potential drug targets. The preferred profile for fungal targets includes proteins conserved among fungi, but absent in the human genome. These characteristics potentially minimize toxic side effects exerted by pharmacological inhibition of the cellular targets. From this first step of post-genomic analysis, we obtained information relevant to future new drug development.


PLOS ONE | 2013

Differences in Cell Morphometry, Cell Wall Topography and Gp70 Expression Correlate with the Virulence of Sporothrix brasiliensis Clinical Isolates

Rafaela Alves De Castro; Paula H. Kubitschek-Barreira; Pedro Antônio Castelo Teixeira; Glenda F. Sanches; Marcus de Melo Teixeira; Leonardo Pereira Quintella; Sandro Rogério de Almeida; Rosane Orofino Costa; Zoilo Pires de Camargo; Maria Sueli Soares Felipe; Wanderley de Souza; Leila M. Lopes-Bezerra

Sporotrichosis is a chronic infectious disease affecting both humans and animals. For many years, this subcutaneous mycosis had been attributed to a single etiological agent; however, it is now known that this taxon consists of a complex of at least four pathogenic species, including Sporothrix schenckii and Sporothrix brasiliensis. Gp70 was previously shown to be an important antigen and adhesin expressed on the fungal cell surface and may have a key role in immunomodulation and host response. The aim of this work was to study the virulence, morphometry, cell surface topology and gp70 expression of clinical isolates of S. brasiliensis compared with two reference strains of S. schenckii. Several clinical isolates related to severe human cases or associated with the Brazilian zoonotic outbreak of sporotrichosis were genotyped and clustered as S. brasiliensis. Interestingly, in a murine subcutaneous model of sporotrichosis, these isolates showed a higher virulence profile compared with S. schenckii. A single S. brasiliensis isolate from an HIV-positive patient not only showed lower virulence but also presented differences in cell morphometry, cell wall topography and abundant gp70 expression compared with the virulent isolates. In contrast, the highly virulent S. brasiliensis isolates showed reduced levels of cell wall gp70. These observations were confirmed by the topographical location of the gp70 antigen using immunoelectromicroscopy in both species. In addition, the gp70 molecule was sequenced and identified using mass spectrometry, and the sequenced peptides were aligned into predicted proteins using Blastp with the S. schenckii and S. brasiliensis genomes.

Collaboration


Dive into the Maria Sueli Soares Felipe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maristela Pereira

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge