Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maristela Pereira is active.

Publication


Featured researches published by Maristela Pereira.


Journal of Bacteriology | 2005

Swine and Poultry Pathogens: the Complete Genome Sequences of Two Strains of Mycoplasma hyopneumoniae and a Strain of Mycoplasma synoviae

Ana Tereza R. Vasconcelos; Henrique Bunselmeyer Ferreira; Cristiano Valim Bizarro; Sandro L. Bonatto; Marcos Oliveira de Carvalho; Paulo Marcos Pinto; Darcy F. de Almeida; Luiz G. P. Almeida; Rosana Almeida; Leonardo Alves-Filho; E. Assunção; Vasco Azevedo; Maurício Reis Bogo; Marcelo M. Brigido; Marcelo Brocchi; Helio A. Burity; Anamaria A. Camargo; Sandro da Silva Camargo; Marta Sofia Peixe Carepo; Dirce M. Carraro; Júlio C. de Mattos Cascardo; Luiza Amaral de Castro; Gisele Cavalcanti; Gustavo Chemale; Rosane G. Collevatti; Cristina W. Cunha; Bruno Dallagiovanna; Bibiana Paula Dambrós; Odir A. Dellagostin; Clarissa Falcão

This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability

Ana Tereza Ribeiro de Vasconcelos; Darcy F. De Almeida; Mariangela Hungria; Claudia Teixeira Guimarães; Regina Vasconcellos Antônio; Francisca Cunha Almeida; Luiz G.P. De Almeida; Rosana Almeida; José Antonio Alves-Gomes; Elizabeth M. Mazoni Andrade; Júlia Rolão Araripe; Magnólia Fernandes Florêncio de Araújo; Spartaco Astolfi-Filho; Vasco Azevedo; Alessandra Jorge Baptistà; Luiz Artur Mendes Bataus; Jacqueline da Silva Batista; André Beló; Cássio van den Berg; Maurício Reis Bogo; Sandro L. Bonatto; Juliano Bordignon; Marcelo M. Macedo Brigidom; Cristiana A. Alves Brito; Marcelo Brocchi; Hélio Almeida Burity; Anamaria A. Camargo; Divina das Dôres de Paula Cardoso; N. P. Carneiro; Dirce Maria Carraro

Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) widespread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.


Yeast | 2003

Transcriptome characterization of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis by EST analysis

Maria Sueli Soares Felipe; Rosângela V. Andrade; S. S. Petrofeza; Andrea Queiroz Maranhão; Fernando Araripe Gonçalves Torres; P. Albuquerque; Fabrício Barbosa Monteiro Arraes; M. Arruda; Maristela O. Azevedo; A. J. Baptista; L. A. M. Bataus; C. L. Borges; Élida G. Campos; M. R. Cruz; Bruno S. Daher; A. Dantas; M. A. S. V. Ferreira; G. V. Ghil; Rosália Santos Amorim Jesuíno; Cynthia Maria Kyaw; L. Leitão; C. R. Martins; Lidia Maria Pepe de Moraes; E. O. Neves; André Moraes Nicola; E. S. Alves; Juliana Alves Parente; Maristela Pereira; Marcio José Poças-Fonseca; R. Resende

Paracoccidioides brasiliensis is a pathogenic fungus that undergoes a temperature‐dependent cell morphology change from mycelium (22° C) to yeast (36° C). It is assumed that this morphological transition correlates with the infection of the human host. Our goal was to identify genes expressed in the mycelium (M) and yeast (Y) forms by EST sequencing in order to generate a partial map of the fungus transcriptome. Individual EST sequences were clustered by the CAP3 program and annotated using Blastx similarity analysis and InterPro Scan. Three different databases, GenBank nr, COG (clusters of orthologous groups) and GO (gene ontology) were used for annotation. A total of 3938 (Y = 1654 and M = 2274) ESTs were sequenced and clustered into 597 contigs and 1563 singlets, making up a total of 2160 genes, which possibly represent one‐quarter of the complete gene repertoire in P. brasiliensis. From this total, 1040 were successfully annotated and 894 could be classified in 18 functional COG categories as follows: cellular metabolism (44%); information storage and processing (25%); cellular processes—cell division, posttranslational modifications, among others (19%); and genes of unknown functions (12%). Computer analysis enabled us to identify some genes potentially involved in the dimorphic transition and drug resistance. Furthermore, computer subtraction analysis revealed several genes possibly expressed in stage‐specific forms of P. brasiliensis. Further analysis of these genes may provide new insights into the pathology and differentiation of P. brasiliensis. All EST sequences have been deposited in GenBank under Accession Nos CA580326–CA584263. Copyright


Fungal Genetics and Biology | 2008

New Paracoccidioides brasiliensis isolate reveals unexpected genomic variability in this human pathogen

Lilia L. Carrero; Gustavo Niño-Vega; Marcus de Melo Teixeira; Maria José A. Carvalho; Célia Maria de Almeida Soares; Maristela Pereira; Rosália Santos Amorim Jesuíno; Juan G. McEwen; Leonel Mendoza; John W. Taylor; Maria Sueli Soares Felipe; Gioconda San-Blas

By means of genealogical concordance phylogenetic species recognition (GCPSR), we have investigated coding and non-coding regions from various genes and the ITS sequences of 7 new and 14 known isolates of Paracoccidioides brasiliensis. Such isolates grouped within the three phylogenetic groups recently reported in the genus Paracoccidioides, with one single exception, i.e., Pb01, a strain that has been the subject of intense molecular studies for many years. This isolate clearly separates from all other Paracoccidioides isolates in phylogenetic analyses and greatly increases the genomic variation known in this genus.


PLOS Genetics | 2011

Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis

Christopher A. Desjardins; Mia D. Champion; Jason W. Holder; Anna Muszewska; Jonathan M. Goldberg; Alexandre M. Bailão; Marcelo M. Brigido; Márcia Eliana da Silva Ferreira; Ana Maria Garcia; Marcin Grynberg; Sharvari Gujja; David I. Heiman; Matthew R. Henn; Chinnappa D. Kodira; Henry León-Narváez; Larissa V. G. Longo; Li-Jun Ma; Iran Malavazi; Alisson L. Matsuo; Flavia V. Morais; Maristela Pereira; Sabrina Rodríguez-Brito; Sharadha Sakthikumar; Silvia Maria Salem-Izacc; Sean Sykes; Marcus de Melo Teixeira; Milene C. Vallejo; Maria Emilia Telles Walter; Chandri Yandava; Qiandong Zeng

Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.


BMC Microbiology | 2007

The transcriptome analysis of early morphogenesis in Paracoccidioides brasiliensis mycelium reveals novel and induced genes potentially associated to the dimorphic process

Karinne P Bastos; Alexandre M. Bailão; Clayton Luiz Borges; Fabrícia P. de Faria; Maria Ss Felipe; Mirelle Garcia Silva; Wellington Santos Martins; Rogério Bento Fiúza; Maristela Pereira; Célia Ma Soares

BackgroundParacoccidioides brasiliensis is a human pathogen with a broad distribution in Latin America. The fungus is thermally dimorphic with two distinct forms corresponding to completely different lifestyles. Upon elevation of the temperature to that of the mammalian body, the fungus adopts a yeast-like form that is exclusively associated with its pathogenic lifestyle. We describe expressed sequence tags (ESTs) analysis to assess the expression profile of the mycelium to yeast transition. To identify P. brasiliensis differentially expressed sequences during conversion we performed a large-scale comparative analysis between P. brasiliensis ESTs identified in the transition transcriptome and databases.ResultsOur analysis was based on 1107 ESTs from a transition cDNA library of P. brasiliensis. A total of 639 consensus sequences were assembled. Genes of primary metabolism, energy, protein synthesis and fate, cellular transport, biogenesis of cellular components were represented in the transition cDNA library. A considerable number of genes (7.51%) had not been previously reported for P. brasiliensis in public databases. Gene expression analysis using in silico EST subtraction revealed that numerous genes were more expressed during the transition phase when compared to the mycelial ESTs [1]. Classes of differentially expressed sequences were selected for further analysis including: genes related to the synthesis/remodeling of the cell wall/membrane. Thirty four genes from this family were induced. Ten genes related to signal transduction were increased. Twelve genes encoding putative virulence factors manifested increased expression. The in silico approach was validated by northern blot and semi-quantitative RT-PCR.ConclusionThe developmental program of P. brasiliensis is characterized by significant differential positive modulation of the cell wall/membrane related transcripts, and signal transduction proteins, suggesting the related processes important contributors to dimorphism. Also, putative virulence factors are more expressed in the transition process suggesting adaptation to the host of the yeast incoming parasitic phase. Those genes provide ideal candidates for further studies directed at understanding fungal morphogenesis and its regulation.


BMC Microbiology | 2009

The malate synthase of Paracoccidioides brasiliensis is a linked surface protein that behaves as an anchorless adhesin

Benedito Rodrigues da Silva Neto; Julhiany de Fátima da Silva; Maria José Soares Mendes-Giannini; Henrique Leonel Lenzi; Célia Maria de Almeida Soares; Maristela Pereira

BackgroundThe pathogenic fungus Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis (PCM). This is a pulmonary mycosis acquired by inhalation of fungal airborne propagules that can disseminate to several organs and tissues leading to a severe form of the disease. Adhesion and invasion to host cells are essential steps involved in the internalization and dissemination of pathogens. Inside the host, P. brasiliensis may use the glyoxylate cycle for intracellular survival.ResultsHere, we provide evidence that the malate synthase of P. brasiliensis (PbMLS) is located on the fungal cell surface, and is secreted. PbMLS was overexpressed in Escherichia coli, and polyclonal antibody was obtained against this protein. By using Confocal Laser Scanning Microscopy, PbMLS was detected in the cytoplasm and in the cell wall of the mother, but mainly of budding cells of the P. brasiliensis yeast phase. PbMLSr and its respective polyclonal antibody produced against this protein inhibited the interaction of P. brasiliensis with in vitro cultured epithelial cells A549.ConclusionThese observations indicated that cell wall-associated PbMLS could be mediating the binding of fungal cells to the host, thus contributing to the adhesion of fungus to host tissues and to the dissemination of infection, behaving as an anchorless adhesin.


Yeast | 2004

Monofunctional catalase P of Paracoccidioides brasiliensis: identification, characterization, molecular cloning and expression analysis.

Sabrina F. I. Moreira; Alexandre M. Bailão; Mônica Santiago Barbosa; Rosália Santos Amorim Jesuíno; M.Sueli S. Felipe; Maristela Pereira; Célia Maria de Almeida Soares

Within the context of studies on genes from Paracoccidioides brasiliensis (Pb) potentially associated with fungus–host interaction, we isolated a 61 kDa protein, pI 6.2, that was reactive with sera of patients with paracoccidioidomycosis. This protein was identified as a peroxisomal catalase. A complete cDNA encoding this catalase was isolated from a Pb cDNA library and was designated PbcatP. The cDNA contained a 1509 bp ORF containing 502 amino acids, whose molecular mass was 57 kDa, with a pI of 6.5. The translated protein PbCATP revealed canonical motifs of monofunctional typical small subunit catalases and the peroxisome‐PTS‐1‐targeting signal. The deduced and the native PbCATP demonstrated amino acid sequence homology to known monofunctional catalases and was most closely related to catalases from other fungi. The protein and mRNA were diminished in the mycelial saprobic phase compared to the yeast phase of infection. Protein synthesis and mRNA levels increased during the transition from mycelium to yeast. In addition, the catalase protein was induced when cells were exposed to hydrogen peroxide. The identification and characterization of the PbCATP and cloning and characterization of the cDNA are essential steps for investigating the role of catalase as a defence of P. brasiliensis against oxygen‐dependent killing mechanisms. These results suggest that this protein exerts an influence in the virulence of P. brasiliensis. Copyright


PLOS ONE | 2013

Predicting the proteins of angomonas deanei, strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family

Maria Cristina M. Motta; Allan Cezar de Azevedo Martins; Silvana S. Souza; Carolina Moura Costa Catta-Preta; Rosane Silva; Cecilia Coimbra Klein; Luiz Gonzaga Paula de Almeida; Oberdan de Lima Cunha; Luciane Prioli Ciapina; Marcelo Brocchi; Ana Cristina Colabardini; Bruna de Araujo Lima; Carlos Renato Machado; Célia Maria de Almeida Soares; Christian Macagnan Probst; Cláudia Beatriz Afonso de Menezes; Claudia E. Thompson; Daniella Castanheira Bartholomeu; Daniela Fiori Gradia; Daniela Parada Pavoni; Edmundo C. Grisard; Fabiana Fantinatti-Garboggini; Fabricio K. Marchini; Gabriela F. Rodrigues-Luiz; Glauber Wagner; Gustavo H. Goldman; Juliana Lopes Rangel Fietto; Maria Carolina Elias; Maria Helena S. Goldman; Marie-France Sagot

Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. In an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively. Identification of each ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and Newbler 2.6 when necessary. The monoxenic organisms revealed conserved housekeeping functions when compared to other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. The monoxenic organisms also contain a large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of the symbiont. The assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine/pyrimidine metabolism. These findings increase our understanding of the intricate symbiotic relationship between the bacterium and the trypanosomatid host and provide clues to better understand eukaryotic cell evolution.


Frontiers in Microbiology | 2011

The Homeostasis of Iron, Copper, and Zinc in Paracoccidioides Brasiliensis, Cryptococcus Neoformans Var. Grubii, and Cryptococcus Gattii: A Comparative Analysis

Mirelle Garcia Silva; Augusto Schrank; Elisa Flávia Luiz Cardoso Bailão; Alexandre Melo Bailão; Clayton Luiz Borges; Charley Christian Staats; Juliana Alves Parente; Maristela Pereira; Silvia Maria Salem-Izacc; Maria José Soares Mendes-Giannini; Rosely Maria Zancopé Oliveira; Lívia Kmetzsch Rosa e Silva; Joshua D. Nosanchuk; Marilene Henning Vainstein; Célia Maria de Almeida Soares

Iron, copper, and zinc are essential for all living organisms. Moreover, the homeostasis of these metals is vital to microorganisms during pathogenic interactions with a host. Most pathogens have developed specific mechanisms for the uptake of micronutrients from their hosts in order to counteract the low availability of essential ions in infected tissues. We report here an analysis of genes potentially involved in iron, copper, and zinc uptake and homeostasis in the fungal pathogens Paracoccidioides brasiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii. Although prior studies have identified certain aspects of metal regulation in Cryptococcus species, little is known regarding the regulation of these elements in P. brasiliensis. We also present amino acid sequences analyses of deduced proteins in order to examine possible conserved domains. The genomic data reveals, for the first time, genes associated to iron, copper, and zinc assimilation and homeostasis in P. brasiliensis. Furthermore, analyses of the three fungal species identified homologs to genes associated with high-affinity uptake systems, vacuolar and mitochondrial iron storage, copper uptake and reduction, and zinc assimilation. However, homologs to genes involved in siderophore production were only found in P. brasiliensis. Interestingly, in silico analysis of the genomes of P. brasiliensis Pb01, Pb03, and Pb18 revealed significant differences in the presence and/or number of genes involved in metal homeostasis, such as in genes related to iron reduction and oxidation. The broad analyses of the genomes of P. brasiliensis, C. neoformans var. grubii, and C. gattii for genes involved in metal homeostasis provide important groundwork for numerous interesting future areas of investigation that are required in order to validate and explore the function of the identified genes and gene pathways.

Collaboration


Dive into the Maristela Pereira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandre Melo Bailão

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar

Clayton Luiz Borges

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar

Juliana Alves Parente

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge