Maria Teresa Cabrita
University of Lisbon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Teresa Cabrita.
Marine Drugs | 2010
Maria Teresa Cabrita; Carlos Vale; Amélia P. Rauter
Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.
Hydrobiologia | 2004
Carla Gameiro; Paulo Cartaxana; Maria Teresa Cabrita; Vanda Brotas
The spatial and temporal variability of phytoplankton abundance (in terms of chlorophyll a and cell number), inorganic nitrogen, suspended particulate matter (SPM), and light availability was determined throughout one year in the Tagus estuary, Portugal. Chlorophyll a concentrations showed a strong seasonal variation with values ranging from 1 to 32 μg l−1(average 5.4 μg l−1). Chlorophyll patterns were unimodal for sites 1, 2, and 3 and bimodal for site 4. Diatoms and cryptophytes were, throughout the year, the dominant groups in this shallow and unstratified estuarine system. Nitrate concentrations were seasonally related to river flow and ammonium concentrations spatially related to sources of sewage input. Lower river inputs and long water residence times during summer initially promoted the accumulation of phytoplankton, but the resulting low dissolved inorganic nitrogen (DIN) concentrations lead to limitation of phytoplankton growth. Chlorophyll a and DIN values obtained in the present study were comparable to those reported 20 years ago for the Tagus estuary.
Oceanologica Acta | 1999
Maria Teresa Cabrita; Fernando Catarino; Carlos Vale
Abstract The time-course evolution of ammonium concentration has been examined in the flood water during the first 25 min of tidal inundation. The way this transport fluctuates with the tidal ranges and wind conditions was investigated. Flood water was collected at three sites, located along a transect from the lower to the upper intertidal area of the Tagus estuary. At spring and intermediate tides, the periods of air exposure vary slightly along the transect due to the high tidal amplitude and the flatness of the area, but the upper site remains uncovered at neap tide over the entire tidal cycle. At each site, sampling was performed at different tidal ranges covering the neap-spring tidal cycle and wind conditions. Ammonium was determined in the flood water at short time intervals: 1, 2, 3, 4, 5, 10, 15, 20 and 25 min. A clear pattern was observed along the transect: considerable quantities of ammonium were exported from the sediment to the water column at the beginning of the inundation, ranging from 0.2 to 4.8 mmol m−2 d−1. The highest transport was recorded at the lower intertidal site under spring tide conditions, which corresponds to the higher energetic situation and shorter emersion period. The lowest transport was observed at the upper intertidal site during the first inundation that followed three days of neap tide and continuous exposure of the sediment to the air. The value rates (0.2–4.8 mmol m−2 d−1) were one order of magnitude higher than those calculated from molecular diffusion (0.07 – 0.16 mmol m−2 d−1). This study points to the importance of the tidal flushing of ammonium from the intertidal sediments, and its spatial and tidal fluctuation.
Aquatic Ecology | 1999
Maria Teresa Cabrita; Fernando Catarino; Gerd Slawyk
The effect of light, temperature and ammonium on inorganic nitrogen uptake by phytoplankton was investigated from June 1994 through December 1995 at three sites in the Tagus estuary (Portugal), during high tide of neap tides. Ammonium concentrations higher than 10 μM reduced nitrate uptake down to 24% but never prevented it. Below this threshold concentration, nitrate uptake was neither inhibited nor changed. Uptake of both nitrate and ammonium as a function of light intensity exhibited a saturation response. Uptake reduction occurred in the near bottom phytoplankton populations, particularly for nitrate. The ammonium uptake system was less limited by light than the nitrate uptake system, indicating the importance of ammonium as a nitrogen source for the phytoplankton which is likely to experience high changes in light in the well-mixed water column of this estuarine environment. Ammonium uptake was exponentially related to temperature in the upper estuary whereas in the mid and lower estuary this relationship was linear. The effect of temperature on nitrate uptake was linear but far less marked than for ammonium uptake.
Environmental Science and Pollution Research | 2014
Maria Teresa Cabrita; Joana Raimundo; Patrícia Pereira; Carlos Vale
This work reports changes of Cr, Cu, Zn, Cd, Hg and Pb concentrations in the dissolved fraction, suspended particulate matter and immobilised Phaeodactylum tricornutum Bohlin (Bacillariophyceae), as well as of microalgae specific growth rates, during a 5-month period dredging operation in a contaminated area of the Tagus estuary, Portugal. Trace element concentrations showed broad variations in the dissolved fraction and suspended particulate matter, presumably reflecting rapid exchanges of redox-sensitive elements between water and particles, in conjunction with the dilution effect caused by the tidal excursion. Immobilised cells exposed to dredging environmental conditions showed significantly higher concentrations of Cr, Cu, Zn, Cd, Hg and Pb than under no dredging conditions. Concomitantly, specific cell growth was significantly lower, suggesting that elements released with dredging affect the microalgae physiology. The results obtained in this in situ work imply that the dissolved fraction and the suspended particulate matter are relatively ineffective indicators of the trace element enhancement during dredging and pointed out immobilised P. tricornutum as a reliable and efficient biomonitoring tool for the assessment of trace element remobilisation.
Marine Pollution Bulletin | 2017
Maria Teresa Cabrita; Ana Padeiro; Eduardo Amaro; Margarida M. Correia dos Santos; Marcelo Leppe; Sergey Verkulich; Kevin A. Hughes; Hans-Ulrich Peter; João Canário
In order to evaluate trace element bioavailability and potential transfer into marine food chains in human impacted areas of the Fildes Peninsula (King George Island, South Shetland Islands Archipelago), element levels (Cr, Ni, Cu, Zn, Cd, and Pb) were determined in water, sediments, phytoplankton, and in diatom Phaeodactylum tricornutum Bohlin (Bacillariophyceae) cells immobilised in alginate and exposed to water and sediments, from the Bellingshausen Dome (reference site) and Ardley Cove (human impacted area), during January 2014. High element concentrations in exposed P. tricornutum indicated element mobilisation from sediments into the water. Levels in exposed cells reflected the sediment element content pattern, comparable to those found in phytoplankton, supporting phytoplankton as an important path of trace element entry into marine food chains. This study clearly shows immobilised P. tricornutum as good proxy of phytoplankton concerning element accumulation efficiency, and an effective tool to monitor trace element contamination in polar coastal ecosystems.
Science of The Total Environment | 2019
Maria Teresa Cabrita; Bernardo Duarte; Rute Cesário; Ricardo Mendes; Holger Hintelmann; Kevin Eckey; Brian Dimock; Isabel Caçador; João Canário
The plant Halimione portulacoides, an abundant species widely distributed in temperate salt-marshes, has been previously assessed as bioindicator and biomonitor of mercury contamination in these ecosystems. The present study aims to assess uptake and distribution of total mercury (THg) and methylmercury (MMHg) within H. portulacoides, potential mercury release by volatilization through leaves, and toxicity and tolerance mechanisms by investigating plant photochemical responses. Stem cuttings of H. portulacoides were collected from a salt-marsh within the Tagus estuary natural protected area, and grown under hydroponic conditions. After root development, plants were exposed to 199HgCl2 and CH3201HgCl, and sampled at specific times (0, 1, 2, 4, 24, 72, 120, 168 (7 days) and 432 h (18 days)). After exposure, roots, stems and leaves were analysed for total 199Hg (T199Hg) and MM201Hg content. Photobiology parameters, namely efficiency and photoprotection capacity, were measured in leaves. Both THg and MMHg were incorporated into the plant root system, stems and leaves, with roots showing much higher levels of both isotope enriched spikes than the other plant tissues. Presence of both mercury isotopes in the stems and leaves and high significant correlations found between roots and stems, and stems and leaves, for both THg and MMHg concentrations, indicate Hg translocation between the roots and above-ground organs. Long-term uptake in stems and leaves, leading to higher Hg content, was more influenced by temperature and radiation than short-term uptake. However, the relatively low levels of both THg and MMHg in the aerial parts of the plant, which were influenced by temperature and radiation, support the possibility of mercury release by stems and leaves, probably via stomata aperture, as a way to eliminate toxic mercury. Regarding photochemical responses, few differences between control and exposed plants were observed, indicating high tolerance of this salt marsh plant to THg and MMHg.
Science of The Total Environment | 2019
Bernardo Duarte; Diogo Prata; Ana Rita Matos; Maria Teresa Cabrita; Isabel Caçador; João Carlos Marques; Henrique N. Cabral; Patrick Reis-Santos; Vanessa F. Fonseca
Pharmaceutical residues impose a new and emerging threat to the marine environment and its biota. In most countries, ecotoxicity tests are not required for all pharmaceutical residues classes and, even when mandatory, these tests are not performed using marine primary producers such as diatoms. These microalgae are among the most abundant class of primary producers in the marine realm and key players in the marine trophic web. Blood-lipid-lowering agents such as bezafibrate and its derivatives are among the most prescribed drugs and most frequently found human pharmaceuticals in aquatic environments. The present study aims to investigate the bezafibrate ecotoxicity and its effects on primary productivity and lipid metabolism, at environmentally relevant concentrations, using the model diatom Phaeodactylum tricornutum. Under controlled conditions, diatom cultures were exposed to bezafibrate at 0, 3, 6, 30 and 60 μg L-1, representing concentrations that can be found in the vicinity of discharges of wastewater treatment plants. High bezafibrate concentrations increased cell density and are suggested to promote a shift from autotrophic to mixotrophic metabolism, with diatoms using light energy generated redox potential to breakdown bezafibrate as carbon source. This was supported by an evident increase in cell density coupled with an impairment of the thylakoid electron transport and consequent photosynthetic activity reduction. In agreement, the concentrations of plastidial marker fatty acids showed negative correlations and Canonical Analysis of Principal coordinates of the relative abundances of fatty acid and photochemical data allowed the separation of controls and cells exposed to bezafibrate with high classification efficiency, namely for photochemical traits, suggesting their validity as suitable biomarkers of bezafibrate exposure. Further evaluations of the occurrence of a metabolic shift in diatoms due to exposure to bezafibrate is paramount, as ultimately it may reduce O2 generation and CO2 fixation in aquatic ecosystems with ensuing consequences for neighboring heterotrophic organisms.
Marine Environmental Research | 2018
Bernardo Duarte; Maria Teresa Cabrita; Tânia Vidal; Joana Luísa Pereira; Mário Pacheco; Patrícia Pereira; João Canário; Fernando Gonçalves; Ana Rita Matos; Rui Rosa; João Carlos Marques; Isabel Caçador; Carla Gameiro
Mercury naturally contaminated environments, like Deception Island (Antarctica), are field labs to study the physiological consequences of chronic Hg-exposure at the community level. Deception Island volcanic vents lead to a continuous chronic exposure of the phytoplanktonic communities to potentially toxic Hg concentrations. Comparing Hg-contaminated areas (Fumarolas Bay - FB, Gabriel de Castilla station - GdC station), no significant differences in chlorophyll a concentrations were detected, indicating that biomass production was not impaired by Hg-exposure despite the high Hg levels found in the cells. Moreover, the electron transport energy, responsible for energy production, also presented rather similar values in phytoplankton from both locations. Regarding FB communities, although the cells absorbed and trapped lower amounts of energy, the effect of Hg was not relevant in the photochemical work produced by the electronic transport chain. This might be due to the activation of alternative internal electron donors, as counteractive measure to the energy accumulated inside the cells. In fact, this alternative electron pathway, may have allowed FB communities to have similar electron transport energy fluxes without using respiration as photoprotective measure towards excessive energy. Hg-exposed cells also showed a shift from the energy flux towards the PS I (photosystem I), alleviating the excessive energy accumulation at the PS II (photosystem II) and preventing an oxidative burst. Our findings suggest a higher energy use efficiency in the communities exposed to volcanic Hg, which is not observable in cultured phytoplankton species grown under Hg exposure. This may constitute a metabolic adaptation, driven from chronic exposure allowing the maintenance of high levels of primary productivity under the assumingly unfavourable conditions of Deception Island.
Marine Ecology Progress Series | 2000
Maria Teresa Cabrita; Vanda Brotas