Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Teresa Maggiorella is active.

Publication


Featured researches published by Maria Teresa Maggiorella.


Nature Medicine | 1999

Control of SHIV-89.6P-infection of cynomolgus monkeys by HIV-1 Tat protein vaccine

Aurelio Cafaro; Antonella Caputo; Claudio Fracasso; Maria Teresa Maggiorella; Delia Goletti; Silvia Baroncelli; Monica Pace; Leonardo Sernicola; Martin Luther Koanga-Mogtomo; Monica Betti; Alessandra Borsetti; Roberto Belli; Lennart Åkerblom; Franco Corrias; Stefano Buttò; Jonathan L. Heeney; Paola Verani; Fausto Titti; Barbara Ensoli

Vaccine strategies aimed at blocking virus entry have so far failed to induce protection against heterologous viruses. Thus, the control of viral infection and the block of disease onset may represent a more achievable goal of human immunodeficiency virus (HIV) vaccine strategies. Here we show that vaccination of cynomolgus monkeys with a biologically active HIV-1 Tat protein is safe, elicits a broad (humoral and cellular) specific immune response and reduces infection with the highly pathogenic simian-human immunodeficiency virus (SHIV)-89.6P to undetectable levels, preventing the CD4+ T-cell decrease. These results may provide new opportunities for the development of a vaccine against AIDS.


FEBS Letters | 2006

Oxidised LDL modulate adipogenesis in 3T3-L1 preadipocytes by affecting the balance between cell proliferation and differentiation

Roberta Masella; Rosaria Varì; Massimo D’Archivio; Carmela Santangelo; Beatrice Scazzocchio; Maria Teresa Maggiorella; Leonardo Sernicola; Fausto Titti; Massimo Sanchez; Umberto Di Mario; Gaetano Leto; Claudio Giovannini

The effects of oxidised LDL (oxLDL) on cell proliferation, apoptosis and hormone‐induced differentiation have been evaluated for the first time in 3T3‐L1 preadipocytes. Unlike control cells, oxLDL‐treated preadipocytes showed a high proliferation rate, a low apoptosis level, and an impaired differentiation process with an increased preadipocyte factor‐1 (Pref‐1) mRNA expression at late times. By silencing Pref‐1 mRNA or inhibiting its expression with an increased dexamethasone concentration, differentiation occurred as usual, which demonstrates the key role of Pref‐1 overexpression. The results suggest a specific action of oxLDL on the adipogenesis inhibitor Pref‐1, as indicated also by its reappearance in mature adipocytes treated with oxLDL. The inhibitory effects of oxLDL on differentiation required oxLDL uptake by CD36, and were associated with lipoprotein lipids. These results point to oxLDL as a modulator of adipose tissue mass and as possible link between obesity and its clinical complications.


Journal of Medical Primatology | 2003

SHIV89.6P pathogenicity in cynomolgus monkeys and control of viral replication and disease onset by human immunodeficiency virus type 1 Tat vaccine

Aurelio Cafaro; Antonella Caputo; Maria Teresa Maggiorella; Silvia Baroncelli; Claudio Fracasso; Monica Pace; Alessandra Borsetti; Leonardo Sernicola; Donatella R.M. Negri; Peter ten Haaft; Monica Betti; Zuleika Michelini; Iole Macchia; Emanuele Fanales-Belasio; Roberto Belli; Franco Corrias; Stefano Buttò; Paola Verani; Fausto Titti; Barbara Ensoli

The Tat protein of human immunodeficiency virus (HIV) is produced very early after infection, plays a key role in the virus life cycle and in acquired immunodeficiency syndrome (AIDS) pathogenesis, is immunogenic and well conserved among all virus clades. Notably, a Tat‐specific immune response correlates with non‐progression to AIDS. Here, we show that a vaccine based on the Tat protein of HIV blocks primary infection with the simian/human immunodeficiency virus (SHIV)89.6P and prevents the CD4 T cell decline and disease onset in cynomolgus monkeys. No signs of virus replication were found in five out of seven vaccinated macaques for almost 1 year of follow‐up. Since the inoculated virus (derived from rhesus or from cynomolgus macaques) is shown to be highly pathogenic in cynomolgus macaques, the results indicate efficacy of Tat vaccination in protection against highly pathogenic virus challenge. Finally, the studies of the Tat‐specific immunological responses indicate a correlation of protection with a cytotoxic T cell response. Thus, a Tat‐based vaccine is a promising candidate for preventive and therapeutic vaccination in humans.


Immunogenetics | 2009

Mhc haplotype H6 is associated with sustained control of SIVmac251 infection in Mauritian cynomolgus macaques

Edward T. Mee; Neil Berry; Claire Ham; Ulrike Sauermann; Maria Teresa Maggiorella; Frédéric Martinon; Ernst J. Verschoor; Jonathan L. Heeney; Roger Le Grand; Fausto Titti; Neil Almond; Nicola J. Rose

The restricted diversity of the major histocompatibility complex (MHC) of Mauritian cynomolgus macaques provides powerful opportunities for insight into host-viral interactions and cellular immune responses that restrict lentiviral infections. However, little is known about the effects of Mhc haplotypes on control of SIV in this species. Using microsatellite-based genotyping and allele-specific PCR, Mhc haplotypes were deduced for 35 macaques infected with the same stock of SIVmac251. Class I haplotype H6 was associated with a reduction in chronic phase viraemia (p = 0.0145) while a similar association was observed for H6 class II (p = 0.0063). An increase in chronic phase viraemia, albeit an insignificant trend, was observed in haplotype H5-positive animals. These results further emphasise the value of genetically defined populations of non-human primates in AIDS research and provide a foundation for detailed characterisation of MHC restricted cellular immune responses and the effects of host genetics on SIV replication in cynomolgus macaques.


DNA and Cell Biology | 2002

HIV-1 Tat-Based Vaccines: From Basic Science to Clinical Trials

Emanuele Fanales-Belasio; Aurelio Cafaro; Andrea Cara; Donatella R.M. Negri; Valeria Fiorelli; Stefano Buttò; Sonia Moretti; Maria Teresa Maggiorella; Silvia Baroncelli; Zuleika Michelini; Antonella Tripiciano; Leonardo Sernicola; Arianna Scoglio; Alessandra Borsetti; Barbara Ridolfi; Roberta Bona; Peter ten Haaft; Iole Macchia; Pasqualina Leone; Maria Rosaria Pavone-Cossut; Filomena Nappi; Eftyhia Vardas; Mauro Magnani; Elena Laguardia; Antonella Caputo; Fausto Titti; Barbara Ensoli

Vaccination against human immunodeficiency virus (HIV)-1 infection requires candidate antigen(s) (Ag) capable of inducing an effective, broad, and long-lasting immune response against HIV-1 despite mutation events leading to differences in virus clades. The HIV-1 Tat protein is more conserved than envelope proteins, is essential in the virus life cycle and is expressed very early upon virus entry. In addition, both humoral and cellular responses to Tat have been reported to correlate with a delayed progression to disease in both humans and monkeys. This suggested that Tat is an optimal target for vaccine development aimed at controlling virus replication and blocking disease onset. Here are reviewed the results of our studies including the effects of the Tat protein on monocyte-derived dendritic cells (MDDCs) that are key antigen-presenting cells (APCs), and the results from vaccination trials with both the Tat protein or tat DNA in monkeys. We provide evidence that the HIV-1 Tat protein is very efficiently taken up by MDDCs and promotes T helper (Th)-1 type immune responses against itself as well as other Ag. In addition, a Tat-based vaccine elicits an immune response capable of controlling primary infection of monkeys with the pathogenic SHIV89.6P at its early stages allowing the containment of virus spread. Based on these results and on data of Tat conservation and immune cross-recognition in field isolates from different clades, phase I clinical trials are being initiated in Italy for both preventive and therapeutic vaccination.


Journal of General Virology | 1997

Live attenuated simian immunodeficiency virus prevents super-infection by cloned SIVmac251 in cynomolgus monkeys.

Fausto Titti; Leonardo Sernicola; A. Geraci; G. Panzini; S. Di Fabio; Roberto Belli; Francesca Monardo; Alessandra Borsetti; Maria Teresa Maggiorella; Martin Luther Koanga-Mogtomo; Franco Corrias; R. Zamarchi; A. Amadori; L. Chieco-Bianchi; Paola Verani

The ability of a live attenuated simian immunodeficiency virus (SIV) to protect against challenge with cloned SIVmac251/BK28 was evaluated in four cynomolgus macaques. The intravenous infection of the C8 variant of the SIVmac251/32H virus, carrying an in-frame 12 bp deletion in the nef gene, did not affect the CD4+ and CD8+ cell counts, and a persistent infection associated with an extremely low virus burden in peripheral blood mononuclear cells (PBMCs) was established. After 40 weeks, these monkeys were challenged intravenously with a 50 MID50 dose of SIVmac251/BK28 virus grown on macaque cells. Four naive monkeys were infected as controls. Monkeys were monitored for 62 weeks following challenge. Attempts to rescue virus from either PBMCs or bone marrow from the C8-vaccinated monkeys were unsuccessful, but in two cases virus was re-isolated from lymph node cells. The presence of the SIV provirus with the C8 variant genotype maintaining its original nef deletion was shown by differential PCR in PBMCs, lymph nodes and bone marrow. Furthermore, in contrast to the control monkeys, the vaccinated monkeys showed normal levels for CD4+ and CD8+ cells, minimal lymphoid hyperplasia and no clinical signs of infection. Our results confirm that vaccination with live attenuated virus can confer protection. This appears to be dependent on the ability of the C8 variant to establish a persistent but attenuated infection which is necessary for inducing an immune response, as suggested by the persistence of a strong immune B cell memory and by the over-expression of interleukin (IL)-2, interferon-gamma and IL-15 mRNAs in PBMCs of C8-vaccinated monkeys but not in those of control monkeys.


FEBS Letters | 2008

Oxidised LDL up-regulate CD36 expression by the Nrf2 pathway in 3T3-L1 preadipocytes

Massimo D'Archivio; Beatrice Scazzocchio; Carmela Filesi; Rosaria Varì; Maria Teresa Maggiorella; Leonardo Sernicola; Carmela Santangelo; Claudio Giovannini; Roberta Masella

The effect of oxLDL on CD36 expression has been assessed in preadipocytes induced to differentiate. Novel evidence is provided that oxLDL induce a peroxisome proliferator‐activated receptor γ‐independent CD36 overexpression, by up‐regulating nuclear factor erythroid 2 (NF‐E2)‐related factor 2 (Nrf2). The nuclear translocation of Nrf2 appeared to depend on PKC pathway activation. In adipocytes, the CD36 up‐regulation may indicate a compensation mechanism to meet the demand of excess oxLDL and oxidised lipids in blood, reducing the risk of atherogenesis. Besides strengthening the hypothesis that oxLDL can contribute to the onset of insulin‐resistance, data herein presented highlight the significance of oxLDL‐induced CD36 overexpression within the cellular defence response.


PLOS ONE | 2012

HIV-1 Tat Promotes Integrin-Mediated HIV Transmission to Dendritic Cells by Binding Env Spikes and Competes Neutralization by Anti-HIV Antibodies

Paolo Monini; Aurelio Cafaro; Indresh K. Srivastava; Sonia Moretti; Victoria Sharma; Claudia Andreini; Chiara Chiozzini; Flavia Ferrantelli; Maria Rosaria Pavone Cossut; Antonella Tripiciano; Filomena Nappi; Olimpia Longo; Stefania Bellino; Orietta Picconi; Emanuele Fanales-Belasio; Alessandra Borsetti; Elena Toschi; Ilaria Schiavoni; Ilaria Bacigalupo; Elaine Kan; Leonardo Sernicola; Maria Teresa Maggiorella; Katy Montin; Marco Porcu; Patrizia Leone; Pasqualina Leone; Barbara Collacchi; Clelia Palladino; Barbara Ridolfi; Mario Falchi

Use of Env in HIV vaccine development has been disappointing. Here we show that, in the presence of a biologically active Tat subunit vaccine, a trimeric Env protein prevents in monkeys virus spread from the portal of entry to regional lymph nodes. This appears to be due to specific interactions between Tat and Env spikes that form a novel virus entry complex favoring R5 or X4 virus entry and productive infection of dendritic cells (DCs) via an integrin-mediated pathway. These Tat effects do not require Tat-transactivation activity and are blocked by anti-integrin antibodies (Abs). Productive DC infection promoted by Tat is associated with a highly efficient virus transmission to T cells. In the Tat/Env complex the cysteine-rich region of Tat engages the Env V3 loop, whereas the Tat RGD sequence remains free and directs the virus to integrins present on DCs. V2 loop deletion, which unshields the CCR5 binding region of Env, increases Tat/Env complex stability. Of note, binding of Tat to Env abolishes neutralization of Env entry or infection of DCs by anti-HIV sera lacking anti-Tat Abs, which are seldom present in natural infection. This is reversed, and neutralization further enhanced, by HIV sera containing anti-Tat Abs such as those from asymptomatic or Tat-vaccinated patients, or by sera from the Tat/Env vaccinated monkeys. Thus, both anti-Tat and anti-Env Abs are required for efficient HIV neutralization. These data suggest that the Tat/Env interaction increases HIV acquisition and spreading, as a mechanism evolved by the virus to escape anti-Env neutralizing Abs. This may explain the low effectiveness of Env-based vaccines, which are also unlikely to elicit Abs against new Env epitopes exposed by the Tat/Env interaction. As Tat also binds Envs from different clades, new vaccine strategies should exploit the Tat/Env interaction for both preventative and therapeutic interventions.


Vaccine | 2011

A combination HIV vaccine based on Tat and Env proteins was immunogenic and protected macaques from mucosal SHIV challenge in a pilot study

Flavia Ferrantelli; Maria Teresa Maggiorella; Ilaria Schiavoni; Leonardo Sernicola; Erika Olivieri; Stefania Farcomeni; Maria Rosaria Pavone-Cossut; Sonia Moretti; Roberto Belli; Barbara Collacchi; Indresh K. Srivastava; Fausto Titti; Aurelio Cafaro; Susan W. Barnett; Barbara Ensoli

HIV native Tat and V2 loop-deleted Env (EnvΔV2) proteins already proved safe and immunogenic in phase I clinical testing as single vaccine components. Further, a phase II vaccine trial with Tat showed intensification of the therapeutic effects of HAART in successfully treated HIV-infected individuals. Here a pilot study assessed the immunogenicity and protective efficacy of an HIV/AIDS vaccine based on the combination of Tat and EnvΔV2 proteins in cynomolgus macaques against homologous intrarectal challenge with 35 MID(50) (monkey infectious dose 50) of an R5 simian-human immunodeficiency virus (SHIV(SF162P4cy)). Upon challenge, three of four macaques immunized with Tat and EnvΔV2, and two of three monkeys immunized with EnvΔV2 alone were protected from infection. In contrast, all three control animals, which had been either administered with the adjuvants only or left untreated, and an additional monkey immunized with Tat alone became systemically infected. Protection of the macaques vaccinated with EnvΔV2 or Tat/EnvΔV2 correlated with higher peak titers of pre-challenge neutralizing antibodies obtained during the immunization period (between 70 and 3 weeks before challenge) and with anti-Env V3 loop binding antibodies assessed 3 weeks before challenge. Compared to EnvΔV2 alone, the Tat and EnvΔV2 combined vaccine elicited faster antibody responses (IgM) with a trend, early in the vaccination schedule, after the second immunization including EnvΔV2, towards broader anti-Env IgG epitope specificity and a higher ratio of neutralizing to Env-binding antibody titers. As the number of immunizations increased, vaccination with EnvΔV2 approached the immune response assessed after two inocula with the Tat/EnvΔV2 combined vaccine, even though some differences remained between groups, as indicated by anti-Env IgG epitope mapping. In fact, three weeks before challenge, plasma IgG of animals in the EnvΔV2 group showed a trend towards stronger specificity for the V1 loop and V5 loop-C5 regions of Env, whereas the Tat/EnvΔV2 group displayed an overall higher reactivity for epitopes within the Env V3 loop throughout the immunization period. Although differences in terms of protection rate were not found between the EnvΔV2 or Tat/EnvΔV2 vaccination groups in this pilot study, vaccination with Tat/EnvΔV2 appeared to accelerate the induction of potentially protective antibody responses to Env. In particular, antibodies to the Env V3 loop, whose levels at pre-challenge correlated with protection, were already higher early in the vaccination schedule in monkeys immunized with Tat/EnvΔV2 as compared to EnvΔV2 alone. Further studies including larger vaccination groups and fewer immunizations with these two vaccine candidates are needed to confirm these findings and to assess whether the Tat/EnvΔV2 vaccine may afford superior protection against infection.


Journal of Virology | 2010

Impact of Viral Dose and Major Histocompatibility Complex Class IB Haplotype on Viral Outcome in Mauritian Cynomolgus Monkeys Vaccinated with Tat upon Challenge with Simian/Human Immunodeficiency Virus SHIV89.6P

Aurelio Cafaro; Stefania Bellino; Fausto Titti; Maria Teresa Maggiorella; Leonardo Sernicola; Roger W. Wiseman; David Venzon; Julie A. Karl; David H. O'Connor; Paolo Monini; Marjorie Robert-Guroff; Barbara Ensoli

ABSTRACT The effects of the challenge dose and major histocompatibility complex (MHC) class IB alleles were analyzed in 112 Mauritian cynomolgus monkeys vaccinated (n = 67) or not vaccinated (n = 45) with Tat and challenged with simian/human immunodeficiency virus (SHIV) 89.6Pcy243. In the controls, the challenge dose (10 to 20 50% monkey infectious doses [MID50]) or MHC did not affect susceptibility to infection, peak viral load, or acute CD4 T-cell loss, whereas in the chronic phase of infection, the H1 haplotype correlated with a high viral load (P = 0.0280) and CD4 loss (P = 0.0343). Vaccination reduced the rate of infection acquisition at 10 MID50 (P < 0.0001), and contained acute CD4 loss at 15 MID50 (P = 0.0099). Haplotypes H2 and H6 were correlated with increased susceptibility (P = 0.0199) and resistance (P = 0.0087) to infection, respectively. Vaccination also contained CD4 depletion (P = 0.0391) during chronic infection, independently of the challenge dose or haplotype.

Collaboration


Dive into the Maria Teresa Maggiorella's collaboration.

Top Co-Authors

Avatar

Fausto Titti

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Leonardo Sernicola

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Barbara Ensoli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Aurelio Cafaro

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Alessandra Borsetti

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Roberto Belli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Silvia Baroncelli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Stefania Farcomeni

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Donatella R.M. Negri

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Paola Verani

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge