Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paola Verani is active.

Publication


Featured researches published by Paola Verani.


Nature Medicine | 1999

Control of SHIV-89.6P-infection of cynomolgus monkeys by HIV-1 Tat protein vaccine

Aurelio Cafaro; Antonella Caputo; Claudio Fracasso; Maria Teresa Maggiorella; Delia Goletti; Silvia Baroncelli; Monica Pace; Leonardo Sernicola; Martin Luther Koanga-Mogtomo; Monica Betti; Alessandra Borsetti; Roberto Belli; Lennart Åkerblom; Franco Corrias; Stefano Buttò; Jonathan L. Heeney; Paola Verani; Fausto Titti; Barbara Ensoli

Vaccine strategies aimed at blocking virus entry have so far failed to induce protection against heterologous viruses. Thus, the control of viral infection and the block of disease onset may represent a more achievable goal of human immunodeficiency virus (HIV) vaccine strategies. Here we show that vaccination of cynomolgus monkeys with a biologically active HIV-1 Tat protein is safe, elicits a broad (humoral and cellular) specific immune response and reduces infection with the highly pathogenic simian-human immunodeficiency virus (SHIV)-89.6P to undetectable levels, preventing the CD4+ T-cell decrease. These results may provide new opportunities for the development of a vaccine against AIDS.


Vaccine | 2001

Vaccination with DNA containing tat coding sequences and unmethylated CpG motifs protects cynomolgus monkeys upon infection with simian/human immunodeficiency virus (SHIV89.6P)

Aurelio Cafaro; Fausto Titti; Claudio Fracasso; M.Teresa Maggiorella; Silvia Baroncelli; Antonella Caputo; Delia Goletti; Alessandra Borsetti; Monica Pace; Emanuele Fanales-Belasio; Barbara Ridolfi; Donatella R.M. Negri; Leonardo Sernicola; Roberto Belli; Franco Corrias; Iole Macchia; Pasqualina Leone; Zuleika Michelini; Peter ten Haaft; Stefano Buttò; Paola Verani; Barbara Ensoli

Recent evidence suggests that a CD8-mediated cytotoxic T cell response against the Tat protein of human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) controls primary infection after pathogenic virus challenge, and correlates with the status of long-term nonprogressor in humans. Due to the presence of unmethylated CpG sequences, DNA vaccination can boost the innate immunity driving more potent T cell-mediated immune responses. Therefore, cynomolgus monkeys were vaccinated with a tat-expressing vector containing defined unmethylated CpG sequences (pCV-tat). Here it is shown that the intramuscular inoculation of the pCV-tat contained primary infection with the highly pathogenic SHIV89.6P virus preventing the CD4(+) T cell decline in all the vaccinated monkeys. Undetectable virus replication and negative virus isolation correlated in all cases with the presence of anti-Tat CTLs. However, a CD8-mediated non cytolytic antiviral activity was also present in all protected animals. Of note, this activity was absent in the controls but was present in the monkey inoculated with the CpG-rich vector alone that was partially protected against viral challenge (i.e. no virus replication but positive virus isolation). These results suggest that a CTL response against Tat protects against primary infection by blocking virus replication at its early stage, in the absence of sterilizing immunity. Nevertheless, the boost of the innate immunity by CpG sequences can contribute to this protection both by driving more potent CTL responses and by inducing other CD8-mediated antiviral activities. Thus, the CpG-rich tat DNA vaccine may represent a promising candidate for preventive and therapeutic vaccination against AIDS.


Vaccine | 1998

Vaginal immunization of cynomolgus monkeys with Streptococcus gordonii expressing HIV-1 and HPV 16 antigens

S. Di Fabio; Donata Medaglini; Catherine M. Rush; Franco Corrias; G. Panzini; Monica Pace; Paola Verani; Gianni Pozzi; Fausto Titti

Cynomolgus monkeys (Macaca fascicularis) were immunized by intravaginal administration of live recombinant Streptococcus gordonii. The vaccine strains of S. gordonii expressed the V3 domain of the gpl20 of human immunodeficiency virus type 1 (HIV-1), and the E7 protein of human papillomavirus type 16 (HPV 16). Multiple inocula of recombinant bacteria were used, since S. gordonii could persist for no longer than 3 days in the monkey vagina. Vaginal immunization was found to induce a local and systemic immune response specific for the heterologous antigen expressed by the bacteria. This antigen-specific immune response consisted of vaginal IgA, serum IgG, and a T-cell proliferative response measured on PBMCs. Vaginal IgG and serum IgA were not detected.


Journal of Medical Primatology | 2003

SHIV89.6P pathogenicity in cynomolgus monkeys and control of viral replication and disease onset by human immunodeficiency virus type 1 Tat vaccine

Aurelio Cafaro; Antonella Caputo; Maria Teresa Maggiorella; Silvia Baroncelli; Claudio Fracasso; Monica Pace; Alessandra Borsetti; Leonardo Sernicola; Donatella R.M. Negri; Peter ten Haaft; Monica Betti; Zuleika Michelini; Iole Macchia; Emanuele Fanales-Belasio; Roberto Belli; Franco Corrias; Stefano Buttò; Paola Verani; Fausto Titti; Barbara Ensoli

The Tat protein of human immunodeficiency virus (HIV) is produced very early after infection, plays a key role in the virus life cycle and in acquired immunodeficiency syndrome (AIDS) pathogenesis, is immunogenic and well conserved among all virus clades. Notably, a Tat‐specific immune response correlates with non‐progression to AIDS. Here, we show that a vaccine based on the Tat protein of HIV blocks primary infection with the simian/human immunodeficiency virus (SHIV)89.6P and prevents the CD4 T cell decline and disease onset in cynomolgus monkeys. No signs of virus replication were found in five out of seven vaccinated macaques for almost 1 year of follow‐up. Since the inoculated virus (derived from rhesus or from cynomolgus macaques) is shown to be highly pathogenic in cynomolgus macaques, the results indicate efficacy of Tat vaccination in protection against highly pathogenic virus challenge. Finally, the studies of the Tat‐specific immunological responses indicate a correlation of protection with a cytotoxic T cell response. Thus, a Tat‐based vaccine is a promising candidate for preventive and therapeutic vaccination in humans.


Journal of General Virology | 2000

T-tropic human immunodeficiency virus (HIV) type 1 Nef protein enters human monocyte-macrophages and induces resistance to HIV replication: a possible mechanism of HIV T-tropic emergence in AIDS.

Alessandrini L; Anna Claudia Santarcangelo; Eleonora Olivetta; Flavia Ferrantelli; Paola D'Aloja; Katherina Pugliese; Pelosi E; Cristiana Chelucci; Mattia G; Peschle C; Paola Verani; Maurizio Federico

Increasing interest has been devoted to the role that monocyte-macrophages play in the pathogenesis of AIDS. The hypothesis of an involvement in AIDS pathogenesis of human/simian immunodeficiency virus (HIV/SIV) Nef also is currently under evaluation by many investigators. The original basis of this hypothesis came from evidence that monkeys infected with a nef-deleted SIV strain failed to develop simian AIDS. Here, we show that treatment of human monocyte-derived macrophages (MDM) with recombinant HIV-1 Nef protein (rNef) induces a strong inhibition of the replication of either macrophage (M-) or dual-tropic HIV-1 strains. Through cytofluorimetric analyses, we detected internalization of FITC-conjugated rNef in MDM as early as 6 h after treatment. Confocal microscope observations demonstrated that the intracellular distribution of internalized rNef was identical to that of endogenously produced Nef. Down-regulation of the CD4 HIV receptor detected upon rNef treatment of MDM suggested that the rNef-induced HIV inhibition occurred at the virus entry step. This deduction was strengthened by the observation that CD4-independent infection was totally insensitive to rNef treatment. The specificity of all observed effects was demonstrated by immunodepletion of rNef. Finally, we showed that the resistance to HIV replication induced by rNef treatment in MDM favours the spread of T-tropic over M-tropic HIV strains in doubly infected CD4(+) lymphocyte-MDM co-cultures. We propose that extracellular Nef contributes to AIDS pathogenesis by inducing resistance to M-tropic HIV replication in MDM, thereby facilitating the switching from M- to T-tropic HIV prevalence that correlates frequently with AIDS progression.


Journal of General Virology | 1997

Live attenuated simian immunodeficiency virus prevents super-infection by cloned SIVmac251 in cynomolgus monkeys.

Fausto Titti; Leonardo Sernicola; A. Geraci; G. Panzini; S. Di Fabio; Roberto Belli; Francesca Monardo; Alessandra Borsetti; Maria Teresa Maggiorella; Martin Luther Koanga-Mogtomo; Franco Corrias; R. Zamarchi; A. Amadori; L. Chieco-Bianchi; Paola Verani

The ability of a live attenuated simian immunodeficiency virus (SIV) to protect against challenge with cloned SIVmac251/BK28 was evaluated in four cynomolgus macaques. The intravenous infection of the C8 variant of the SIVmac251/32H virus, carrying an in-frame 12 bp deletion in the nef gene, did not affect the CD4+ and CD8+ cell counts, and a persistent infection associated with an extremely low virus burden in peripheral blood mononuclear cells (PBMCs) was established. After 40 weeks, these monkeys were challenged intravenously with a 50 MID50 dose of SIVmac251/BK28 virus grown on macaque cells. Four naive monkeys were infected as controls. Monkeys were monitored for 62 weeks following challenge. Attempts to rescue virus from either PBMCs or bone marrow from the C8-vaccinated monkeys were unsuccessful, but in two cases virus was re-isolated from lymph node cells. The presence of the SIV provirus with the C8 variant genotype maintaining its original nef deletion was shown by differential PCR in PBMCs, lymph nodes and bone marrow. Furthermore, in contrast to the control monkeys, the vaccinated monkeys showed normal levels for CD4+ and CD8+ cells, minimal lymphoid hyperplasia and no clinical signs of infection. Our results confirm that vaccination with live attenuated virus can confer protection. This appears to be dependent on the ability of the C8 variant to establish a persistent but attenuated infection which is necessary for inducing an immune response, as suggested by the persistence of a strong immune B cell memory and by the over-expression of interleukin (IL)-2, interferon-gamma and IL-15 mRNAs in PBMCs of C8-vaccinated monkeys but not in those of control monkeys.


Epidemiology and Infection | 1991

Heterosexual and homosexual transmission of hepatitis C virus: relation with hepatitis B virus and human immunodeficiency virus type 1

Rosamaria Corona; G. Prignano; Alfonso Mele; G. Gentili; F. Caprilli; E. Franco; L. Ferrigno; A. Giglio; F. Titti; C. Bruno; Paola Verani; Paolo Pasquini

A seroprevalence study was carried out on 1757 outpatients consecutively seen in a sexually transmitted disease (STD) clinic in order to evaluate the sexual transmission of hepatitis C virus (HCV). A total of 1442 consenting patients were tested for hepatitis C, hepatitis B and human immunodeficiency virus type 1 (HCV, HBV, HIV-1) antibodies. The relations between anti-HCV, anti-HBc and anti-HIV-1 were studied. Of 73 anti-HCV positive reactions, 45 (61.6%) were confirmed by the recombinant immunoblot assay (RIBA). The proportion of individuals with anti-HCV was higher in outpatients with a history of sexually transmitted disease than without. It was 2.8% in non drug user heterosexuals and 2.9% in non drug user homosexuals. Intravenous drug users (IDU) had higher anti-HCV prevalence when a history of STD was taken into account (42.3% in subjects with STD versus 36.7% in subjects without STD). Among non drug user heterosexuals an association was found between anti-HCV and anti-HBc. These data suggest that sexual transmission of HCV occurs, although it seems to be less efficient than other parenteral modes of transmission. When a more sensitive and specific marker of HCV infection become available, a more accurate estimate of the frequency and efficiency of the sexual transmission will be possible.


Journal of Virology | 2000

cis Expression of the F12 Human Immunodeficiency Virus (HIV) Nef Allele Transforms the Highly Productive NL4-3 HIV Type 1 to a Replication-Defective Strain: Involvement of both Env gp41 and CD4 Intracytoplasmic Tails

Eleonora Olivetta; Katherina Pugliese; Roberta Bona; Paola D'Aloja; Flavia Ferrantelli; Anna Claudia Santarcangelo; Gianfranco Mattia; Paola Verani; Maurizio Federico

ABSTRACT F12 human immunodeficiency virus type 1 (HIV-1) nef is a naturally occurring nef mutant cloned from the provirus of a nonproductive, nondefective, and interfering HIV-1 variant (F12-HIV). We have already shown that cells stably transfected with a vector expressing the F12-HIV nef allele do not downregulate CD4 receptors and, more peculiarly, become resistant to the replication of wild type (wt) HIV. In order to investigate the mechanism of action of such an HIV inhibition, the F12-HIVnef gene was expressed in the context of the NL4-3 HIV-1 infectious molecular clone by replacing the wt nef gene (NL4-3/chi). Through this experimental approach we established the following. First, NL4-3/chi and nef-defective (Δnef) NL4-3 viral particles behave very similarly in terms of viral entry and HIV protein production during the first replicative cycle. Second, no viral particles were produced from cells infected with NL4-3/chi virions, whatever the multiplicity of infection used. The viral inhibition apparently occurs at level of viral assembling and/or release. Third, this block could not be relieved by in-trans expression of wt nef. Finally, NL4-3/chi reverts to a producer HIV strain when F12-HIV Nef is deprived of its myristoyl residue. Through a CD4 downregulation competition assay, we demonstrated that F12-HIV Nef protein potently inhibits the CD4 downregulation induced by wt Nef. Moreover, we observed a redistribution of CD4 receptors at the cell margin induced by F12-HIV Nef. These observations strongly suggest that F12-HIV Nef maintains the ability to interact with the intracytoplasmic tail of the CD4 receptor molecule. Remarkably, we distinguished the intracytoplasmic tails of Env gp41 and CD4 as, respectively, viral and cellular targets of the F12-HIV Nef-induced viral retention. For the first time, the inhibition of the viral life cycle by means of in-cis expression of a Nef mutant is here reported. Delineation of the F12-HIV Nef mechanism of action may offer additional approaches to interference with the propagation of HIV infection.


Archives of virology. Supplementum | 1996

Sandfly fever viruses in Italy

Loredana Nicoletti; Maria Grazia Ciufolini; Paola Verani

Two serologically distinct agents, the sandfly fever Sicilian and the sandfly fever Naples viruses, were isolated by Sabin from blood samples taken during an Italian epidemic of febrile illness. Since then, several different viruses have been isolated from sandflies and/or humans in both the Old and New World. Toscana virus, a new virus closely antigenically related to sandfly fever Naples virus, was isolated in 1971 from the sandfly Phlebotomus perniciosus in Italy. Extensive studies on the importance of Toscana virus as a human pathogen demonstrated its association with acute neurologic diseases. A serosurvey for the presence of antibodies to sandfly fever Sicilian, sandfly fever Naples and Toscana viruses indicated that, as in other Mediterranean areas, both sandfly fever Sicilian and sandfly fever Naples viral infections decreased or disappeared after the 1940s in countries performing insecticide-spraying malaria eradication campaigns. In contrast, clinical cases of aseptic meningitis or meningoencephalitis caused by Toscana virus are observed annually in Central Italy during the summer. Toscana virus may be present in other Mediterranean countries where sandflies of the genus Phlebotomus are present.


Vaccine | 1995

Protection of macaques against simian immunodeficiency virus infection with inactivated vaccines: comparison of adjuvants, doses and challenge viruses

Dominique Dormont; Roger Le Grand; Martin Cranage; Peter J. Greenaway; Gerhard Hunsmann; Christiane Stahl-Hennig; Giovanni B. Rossi; Paola Verani; Jim Stott; Pete Kitchin; Albert D. M. E. Osterhaus; Petra de Vries; Reinhard Kurth; Stephen Norley; Jonathan L. Heeney; Gunnel Biberfeld; Per Putkonen

Nine European laboratories contributed a total of 98 macaques towards a collaborative trial to study the ability of formaldehyde-inactivated or subunit SIV vaccines to protect immunized animals against live virus challenges. Four adjuvants, three dose levels and two immunization schedules were compared. Fifty-two of 61 (85%) immunized animals were protected against infection after challenge with either homologous or heterologous virus strains grown in human cells. Optimum protection required a high dose of antigen and a prolonged immunization schedule. On the day of challenge the titres of antibodies to SIV and to host cell components, as well as the titres of neutralizing antibodies, were significantly higher in the protected animals than in the non-protected. Forty-four vaccinated macaques (of which 36 were protected against previous challenges grown in human cells) and 28 naive animals were then challenged with extracellular or cell-associated SIV grown in simian cells. All naive animals and all vaccinees challenged with extracellular SIV became infected. Four of the eight animals challenged with cell-associated viruses were protected. These results clearly indicate that vaccines which potently protect against SIV grown in human cells, do not protect against SIV grown in simian cells. The cell substrate on which challenge viruses are grown is clearly significant in interpreting the results of vaccine trials. This trial has demonstrated that SIV vaccines using different adjuvants can protect macaques against SIV grown in human cells but not against extracellular SIV grown in simian cells. These results have important relevance to the development of HIV vaccines for humans.(ABSTRACT TRUNCATED AT 250 WORDS)

Collaboration


Dive into the Paola Verani's collaboration.

Top Co-Authors

Avatar

Fausto Titti

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurizio Federico

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Leonardo Sernicola

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Franco Corrias

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Stefano Buttò

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Giovanni Rezza

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra Borsetti

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Paola D'Aloja

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge