María Triviño
University of Jyväskylä
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María Triviño.
Journal of Applied Ecology | 2017
María Triviño; Tähti Pohjanmies; Adriano Mazziotta; Artti Juutinen; Dmitry Podkopaev; Eric Le Tortorec; Mikko Mönkkönen
Summary The boreal biome, representing approximately one-third of remaining global forests, provides a number of crucial ecosystem services. A particular challenge in forest ecosystems is to reconcile demand for an increased timber production with provisioning of other ecosystem services and biodiversity. However, there is still little knowledge about how forest management could help solve this challenge. Hence, studies that investigate how to manage forests to reduce trade-offs between ecosystem services and biodiversity are urgently needed to help forest owners and policy makers take informed decisions. We applied seven alternative forest management regimes using a forest growth simulator in a large boreal forest production landscape. First, we estimated the potential of the landscape to provide harvest revenues, store carbon and maintain biodiversity across a 50-year time period. Then, we applied multiobjective optimization to identify the trade-offs between these three objectives and to identify the optimal combination of forest management regimes to achieve these objectives. It was not possible to achieve high levels of either carbon storage or biodiversity if the objective of forest management was to maximize timber harvest revenues. Moreover, conflicts between biodiversity and carbon storage became stronger when simultaneously targeting high levels of timber revenues. However, with small reductions in timber revenues, it was possible to greatly increase the multifunctionality of the landscape, especially the biodiversity indicators. Forest management actions, alternative to business-as-usual management, such as reducing thinnings, extending the rotation period and increasing the amount of area set aside from forestry may be necessary to safeguard biodiversity and non-timber ecosystem services in Fennoscandia. Synthesis and applications. Our results show that no forest management regime alone is able to maximize timber revenues, carbon storage and biodiversity individually or simultaneously and that a combination of different regimes is needed to resolve the conflicts among these objectives. We conclude that it is possible to reduce the trade-offs between different objectives by applying diversified forest management planning at the boreal landscape level and that we need to give up the all-encompassing objective of very intensive timber production, which is prevailing particularly in Fennoscandian countries.
AMBIO: A Journal of the Human Environment | 2017
Tähti Pohjanmies; María Triviño; Eric Le Tortorec; Adriano Mazziotta; Tord Snäll; Mikko Mönkkönen
Forests are widely recognized as major providers of ecosystem services, including timber, other forest products, recreation, regulation of water, soil and air quality, and climate change mitigation. Extensive tracts of boreal forests are actively managed for timber production, but actions aimed at increasing timber yields also affect other forest functions and services. Here, we present an overview of the environmental impacts of forest management from the perspective of ecosystem services. We show how prevailing forestry practices may have substantial but diverse effects on the various ecosystem services provided by boreal forests. Several aspects of these processes remain poorly known and warrant a greater role in future studies, including the role of community structure. Conflicts among different interests related to boreal forests are most likely to occur, but the concept of ecosystem services may provide a useful framework for identifying and resolving these conflicts.
Global Change Biology | 2015
Adriano Mazziotta; María Triviño; Olli-Pekka Tikkanen; Jari Kouki; Harri Strandman; Mikko Mönkkönen
Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate change is determined by several interacting factors including dispersal and human land use. Designing effective conservation strategies at regional scales to improve landscape suitability requires measuring the vulnerabilities of specific regions to climate change and determining their conservation capacities. Although methods for defining vulnerability categories are available, methods for doing this in a systematic, cost-effective way have not been identified. Here, we use an ecosystem model to define the potential resilience of the Finnish forest landscape by relating its current conservation capacity to its vulnerability to climate change. In applying this framework, we take into account the responses to climate change of a broad range of red-listed species with different niche requirements. This framework allowed us to identify four categories in which representation in the landscape varies among three IPCC emission scenarios (B1, low; A1B, intermediate; A2, high emissions): (i) susceptible (B1 = 24.7%, A1B = 26.4%, A2 = 26.2%), the most intact forest landscapes vulnerable to climate change, requiring management for heterogeneity and resilience; (ii) resilient (B1 = 2.2%, A1B = 0.5%, A2 = 0.6%), intact areas with low vulnerability that represent potential climate refugia and require conservation capacity maintenance; (iii) resistant (B1 = 6.7%, A1B = 0.8%, A2 = 1.1%), landscapes with low current conservation capacity and low vulnerability that are suitable for restoration projects; (iv) sensitive (B1 = 66.4%, A1B = 72.3%, A2 = 72.0%), low conservation capacity landscapes that are vulnerable and for which alternative conservation measures are required depending on the intensity of climate change. Our results indicate that the Finnish landscape is likely to be dominated by a very high proportion of sensitive and susceptible forest patches, thereby increasing uncertainty for landscape managers in the choice of conservation strategies.
Science of The Total Environment | 2018
Luís Reino; María Triviño; Pedro Beja; Miguel B. Araújo; Rui Figueira; Pedro Segurado
Several studies estimating the effects of global environmental change on biodiversity are focused on climate change. Yet, non-climatic factors such as changes in land cover can also be of paramount importance. This may be particularly important for habitat specialists associated with human-dominated landscapes, where land cover and climate changes may be largely decoupled. Here, we tested this idea by modelling the influence of climate, landscape composition and pattern, on the predicted future (2021-2050) distributions of 21 farmland bird species in the Iberian Peninsula, using boosted regression trees and 10-km resolution presence/absence data. We also evaluated whether habitat specialist species were more affected by landscape factors than generalist species. Overall, this study showed that the contribution of current landscape composition and pattern to the performance of species distribution models (SDMs) was relatively low. However, SDMs built using either climate or climate plus landscape variables yielded very different predictions of future species range shifts and, hence, of the geographical patterns of change in species richness. Our results indicate that open habitat specialist species tend to expand their range, whereas habitat generalist species tend to retract under climate change scenarios. The effect of incorporating landscape factors were particularly marked on open habitat specialists of conservation concern, for which the expected expansion under climate change seems to be severely constrained by land cover change. Overall, results suggest that particular attention should be given to landscape change in addition to climate when modelling the impacts of environmental changes for both farmland specialist and generalist bird distributions.
Archive | 2018
Mikko Mönkkönen; Daniel Burgas; Kyle Eyvindson; Eric Le Tortorec; Maiju Peura; Tähti Pohjanmies; Anna Repo; María Triviño
This chapter discusses challenges and possibilities involved in preserving biological diversity and the diversity of ecosystem services in the boreal zone and yet at the same time maintaining intensive timber extraction in boreal forests. Our focus is on Fennoscandian forests at the landscapes level, and we consider economic, social, and ecological in the sustainability of forest management. We provide an outlook to boreal forest ecosystems and their history and an overview of the forestry practices and policies that aim to ensure multifunctionality of Fennoscandian forests, i.e., diversity of efforts on sustaining biodiversity, timber production, and other ecosystem services from forest landscapes. We review the current scientific understanding management effects on the structure and dynamics of the forest at different spatial, and the consequent repercussions on forest biodiversity and ecosystem services. Evidence suggests that many ecosystem services and biodiversity are in conflict with intensive timber production in boreal forests. We therefore present methods for assessing conflicts among alternative forest uses and for finding solutions for conflicts. We conclude the chapter by providing insights for future management aiming at sustainability from economic, ecological, and social perspectives.
Landscape Ecology | 2018
María Triviño; Heini Kujala; Miguel B. Araújo; Mar Cabeza
ContextSpecies are expected to shift their distributions in response to global environmental changes and additional protected areas are needed to encompass the corresponding changes in the distributions of their habitats. Conservation policies are likely to become obsolete unless they integrate the potential impacts of climate and land-use change on biodiversity.ObjectivesWe identify conservation priority areas for current and future projected distributions of Iberian bird species. We then investigate the extent to which global change informed priority areas are: (i) covered by existing protected area networks (national protected areas and Natura 2000); (ii) threatened by agricultural or urban land-use changes.MethodsWe use outputs of species distributions models fitted with climatic data as inputs in spatial prioritization tools to identify conservation priority areas for 168 bird species. We use projections of land-use change to then discriminate between threatened and non-threatened priority areas.Results19% of the priority areas for birds are covered by national protected areas and 23% are covered by Natura 2000 sites. The spatial mismatch between protected area networks and priority areas for birds is projected to increase with climate change. But there are opportunities to improve the protection of birds under climate change, as half of the priority areas are currently neither protected nor in conflict with urban or agricultural land-uses.ConclusionsWe identify critical areas for bird conservation both under current and climate change conditions, and propose that they could guide the establishment of new conservation areas across the Iberian Peninsula complementing existing protected areas.
Nature Climate Change | 2013
Damien A. Fordham; H. R. Akçakaya; Barry W. Brook; Alejandro Rodríguez; Paulo C. Alves; Emilio Civantos; María Triviño; Michael J. Watts; Miguel B. Araújo
Ecosystem services | 2015
María Triviño; Artti Juutinen; Adriano Mazziotta; Kaisa Miettinen; Dmitry Podkopaev; Pasi Reunanen; Mikko Mönkkönen
Biological Conservation | 2013
María Triviño; Mar Cabeza; Wilfried Thuiller; Thomas Hickler; Miguel B. Araújo
Silva Fennica | 2016
Maiju Peura; María Triviño; Adriano Mazziotta; Dmitry Podkopaev; Artti Juutinen; Mikko Mönkkönen