Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mikko Mönkkönen is active.

Publication


Featured researches published by Mikko Mönkkönen.


Journal of Environmental Management | 2014

Spatially dynamic forest management to sustain biodiversity and economic returns

Mikko Mönkkönen; Artti Juutinen; Adriano Mazziotta; Kaisa Miettinen; Dmitry Podkopaev; Pasi Reunanen; Hannu Salminen; Olli-Pekka Tikkanen

Production of marketed commodities and protection of biodiversity in natural systems often conflict and thus the continuously expanding human needs for more goods and benefits from global ecosystems urgently calls for strategies to resolve this conflict. In this paper, we addressed what is the potential of a forest landscape to simultaneously produce habitats for species and economic returns, and how the conflict between habitat availability and timber production varies among taxa. Secondly, we aimed at revealing an optimal combination of management regimes that maximizes habitat availability for given levels of economic returns. We used multi-objective optimization tools to analyze data from a boreal forest landscape consisting of about 30,000 forest stands simulated 50 years into future. We included seven alternative management regimes, spanning from the recommended intensive forest management regime to complete set-aside of stands (protection), and ten different taxa representing a wide variety of habitat associations and social values. Our results demonstrate it is possible to achieve large improvements in habitat availability with little loss in economic returns. In general, providing dead-wood associated species with more habitats tended to be more expensive than providing requirements for other species. No management regime alone maximized habitat availability for the species, and systematic use of any single management regime resulted in considerable reductions in economic returns. Compared with an optimal combination of management regimes, a consistent application of the recommended management regime would result in 5% reduction in economic returns and up to 270% reduction in habitat availability. Thus, for all taxa a combination of management regimes was required to achieve the optimum. Refraining from silvicultural thinnings on a proportion of stands should be considered as a cost-effective management in commercial forests to reconcile the conflict between economic returns and habitat required by species associated with dead-wood. In general, a viable strategy to maintain biodiversity in production landscapes would be to diversify management regimes. Our results emphasize the importance of careful landscape level forest management planning because optimal combinations of management regimes were taxon-specific. For cost-efficiency, the results call for balanced and correctly targeted strategies among habitat types.


European Journal of Forest Research | 2012

To thin or not to thin: bio-economic analysis of two alternative practices to increase amount of coarse woody debris in managed forests

Olli-Pekka Tikkanen; Jukka Matero; Mikko Mönkkönen; Artti Juutinen; Jari Kouki

Maintenance of biodiversity in commercial forests has become a main goal in forestry, and several new management principles to reach that goal have been introduced lately. For example, in even-aged forestry, tree retention (leaving a proportion of trees standing in clear-cut sites) is widely used to increase the structural diversity and the amount of dead wood in forests. However, the cost-efficiency of the new management principles is poorly studied. To increase the amount of dead wood, an alternative way could be a change in the thinning regime, so that the self-thinning builds up of woody debris of a growing stand. We used long-term (200xa0years) simulations to compare ecological and economical effects of the two alternative management practices to increase the amount of dead wood in forest stands: (1) green tree retention and (2) growing stands unthinned. We simulated stand growth and management of 12 pine and 12 spruce stands that represented sites in different parts of Finland. We found that growing stands unthinned produced about 5–6xa0times more dead wood than retention with 20 trees left per hectare. In terms of economical loss, leaving stands unthinned reduced the net present value of harvest revenues less than 20%. Consequently, leaving stands unthinned offers a cost-effective option to increase the amount of dead wood in commercial forests. The effects of unthinned management were, however, dependent on thermal sum and initial stand density, indicating that biodiversity-oriented management practices should be designed for local conditions.


Ecology and Evolution | 2014

Variation in clutch size in relation to nest size in birds

Anders Pape Møller; Frank Adriaensen; Alexandr Artemyev; Jerzy Bańbura; Emilio Barba; Clotilde Biard; Jacques Blondel; Zihad Bouslama; Jean Charles Bouvier; Jordi Camprodon; Francesco Cecere; Anne Charmantier; Motti Charter; Mariusz Cichoń; Camillo Cusimano; Dorota Czeszczewik; Virginie Demeyrier; Blandine Doligez; Claire Doutrelant; Anna Dubiec; Marcel Eens; Tapio Eeva; Bruno Faivre; Peter N. Ferns; Jukka T. Forsman; Eduardo Garcia-del-Rey; Aya Goldshtein; Anne E. Goodenough; Andrew G. Gosler; Iga Góźdź

Nests are structures built to support and protect eggs and/or offspring from predators, parasites, and adverse weather conditions. Nests are mainly constructed prior to egg laying, meaning that parent birds must make decisions about nest site choice and nest building behavior before the start of egg-laying. Parent birds should be selected to choose nest sites and to build optimally sized nests, yet our current understanding of clutch size-nest size relationships is limited to small-scale studies performed over short time periods. Here, we quantified the relationship between clutch size and nest size, using an exhaustive database of 116 slope estimates based on 17,472 nests of 21 species of hole and non-hole-nesting birds. There was a significant, positive relationship between clutch size and the base area of the nest box or the nest, and this relationship did not differ significantly between open nesting and hole-nesting species. The slope of the relationship showed significant intraspecific and interspecific heterogeneity among four species of secondary hole-nesting species, but also among all 116 slope estimates. The estimated relationship between clutch size and nest box base area in study sites with more than a single size of nest box was not significantly different from the relationship using studies with only a single size of nest box. The slope of the relationship between clutch size and nest base area in different species of birds was significantly negatively related to minimum base area, and less so to maximum base area in a given study. These findings are consistent with the hypothesis that bird species have a general reaction norm reflecting the relationship between nest size and clutch size. Further, they suggest that scientists may influence the clutch size decisions of hole-nesting birds through the provisioning of nest boxes of varying sizes.


Ecology | 2014

The past and the present in decision-making: the use of conspecific and heterospecific cues in nest site selection

Sami M. Kivelä; Janne-Tuomas Seppänen; Otso Ovaskainen; Blandine Doligez; Lars Gustafsson; Mikko Mönkkönen; Jukka T. Forsman

Nest site selection significantly affects fitness, so adaptations for assessment of the qualities of available sites are expected. The assessment may be based on personal or social information, the latter referring to the observed location and performance of both conspecific and heterospecific individuals. Contrary to large-scale breeding habitat selection, small-scale nest site selection within habitat patches is insufficiently understood. We analyzed nest site selection in the migratory Collared Flycatcher Ficedula albicollis in relation to present and past cues provided by conspecifics and by resident tits within habitat patches by using long-term data. Collared Flycatchers preferred nest boxes that were occupied by conspecifics in the previous year. This preference was strongest in breeding pairs where both individuals bred in the same forest patch in the previous year. The results also suggest preference for nest boxes close to boxes where conspecifics had a high breeding success in the previous year, and for nest boxes which are presently surrounded by a high number of breeding Great Tits Parus major. The results indicate social information use in nest site selection at a small spatial scale, where Collared Flycatchers use conspecific cues with a time lag of one year and heterospecific cues instantly.


Journal of Applied Ecology | 2017

Optimizing management to enhance multifunctionality in a boreal forest landscape

María Triviño; Tähti Pohjanmies; Adriano Mazziotta; Artti Juutinen; Dmitry Podkopaev; Eric Le Tortorec; Mikko Mönkkönen

Summary nThe boreal biome, representing approximately one-third of remaining global forests, provides a number of crucial ecosystem services. A particular challenge in forest ecosystems is to reconcile demand for an increased timber production with provisioning of other ecosystem services and biodiversity. However, there is still little knowledge about how forest management could help solve this challenge. Hence, studies that investigate how to manage forests to reduce trade-offs between ecosystem services and biodiversity are urgently needed to help forest owners and policy makers take informed decisions. nWe applied seven alternative forest management regimes using a forest growth simulator in a large boreal forest production landscape. First, we estimated the potential of the landscape to provide harvest revenues, store carbon and maintain biodiversity across a 50-year time period. Then, we applied multiobjective optimization to identify the trade-offs between these three objectives and to identify the optimal combination of forest management regimes to achieve these objectives. nIt was not possible to achieve high levels of either carbon storage or biodiversity if the objective of forest management was to maximize timber harvest revenues. Moreover, conflicts between biodiversity and carbon storage became stronger when simultaneously targeting high levels of timber revenues. However, with small reductions in timber revenues, it was possible to greatly increase the multifunctionality of the landscape, especially the biodiversity indicators. nForest management actions, alternative to business-as-usual management, such as reducing thinnings, extending the rotation period and increasing the amount of area set aside from forestry may be necessary to safeguard biodiversity and non-timber ecosystem services in Fennoscandia. nSynthesis and applications. Our results show that no forest management regime alone is able to maximize timber revenues, carbon storage and biodiversity individually or simultaneously and that a combination of different regimes is needed to resolve the conflicts among these objectives. We conclude that it is possible to reduce the trade-offs between different objectives by applying diversified forest management planning at the boreal landscape level and that we need to give up the all-encompassing objective of very intensive timber production, which is prevailing particularly in Fennoscandian countries.


Methods in Ecology and Evolution | 2014

Clutch-size variation in Western Palaearctic secondary hole-nesting passerine birds in relation to nest box design

Anders Pape Møller; Frank Adriaensen; Alexandr Artemyev; Jerzy Bańbura; Emilio Barba; Clotilde Biard; Jacques Blondel; Zihad Bouslama; Jean Charles Bouvier; Jordi Camprodon; Francesco Cecere; Alexis S. Chaine; Anne Charmantier; Motti Charter; Mariusz Cichoń; Camillo Cusimano; Dorota Czeszczewik; Blandine Doligez; Claire Doutrelant; Anna Dubiec; Marcel Eens; Tapio Eeva; Bruno Faivre; Peter N. Ferns; Jukka T. Forsman; Eduardo Garcia-del-Rey; Aya Goldshtein; Anne E. Goodenough; Andrew G. Gosler; Iga Góźdź

Secondary hole-nesting birds that do not construct nest holes themselves and hence regularly breed in nest boxes constitute important model systems for field studies in many biological disciplines with hundreds of scientists and amateurs involved. Those research groups are spread over wide geographic areas that experience considerable variation in environmental conditions, and researchers provide nest boxes of varying designs that may inadvertently introduce spatial and temporal variation in reproductive parameters. We quantified the relationship between mean clutch size and nest box size and material after controlling for a range of environmental variables in four of the most widely used model species in the Western Palaearctic: great tit Parus major, blue tit Cyanistes caeruleus, pied flycatcher Ficedula hypoleuca and collared flycatcher F.albicollis from 365 populations and 79610 clutches. Nest floor area and nest box material varied non-randomly across latitudes and longitudes, showing that scientists did not adopt a random box design. Clutch size increased with nest floor area in great tits, but not in blue tits and flycatchers. Clutch size of blue tits was larger in wooden than in concrete nest boxes. These findings demonstrate that the size of nest boxes and material used to construct nest boxes can differentially affect clutch size in different species. The findings also suggest that the nest box design may affect not only focal species, but also indirectly other species through the effects of nest box design on productivity and therefore potentially population density and hence interspecific competition.


AMBIO: A Journal of the Human Environment | 2017

Impacts of forestry on boreal forests: An ecosystem services perspective

Tähti Pohjanmies; María Triviño; Eric Le Tortorec; Adriano Mazziotta; Tord Snäll; Mikko Mönkkönen

Forests are widely recognized as major providers of ecosystem services, including timber, other forest products, recreation, regulation of water, soil and air quality, and climate change mitigation. Extensive tracts of boreal forests are actively managed for timber production, but actions aimed at increasing timber yields also affect other forest functions and services. Here, we present an overview of the environmental impacts of forest management from the perspective of ecosystem services. We show how prevailing forestry practices may have substantial but diverse effects on the various ecosystem services provided by boreal forests. Several aspects of these processes remain poorly known and warrant a greater role in future studies, including the role of community structure. Conflicts among different interests related to boreal forests are most likely to occur, but the concept of ecosystem services may provide a useful framework for identifying and resolving these conflicts.


Ecology and Evolution | 2016

Interspecific variation in the relationship between clutch size, laying date and intensity of urbanization in four species of hole-nesting birds

Marie Vaugoyeau; Frank Adriaensen; Alexandr Artemyev; Jerzy Bańbura; Emilio Barba; Clotilde Biard; Jacques Blondel; Zihad Bouslama; Jean-Charles Bouvier; Jordi Camprodon; Francesco Cecere; Anne Charmantier; Motti Charter; Mariusz Cichoń; Camillo Cusimano; Dorota Czeszczewik; Virginie Demeyrier; Blandine Doligez; Claire Doutrelant; Anna Dubiec; Marcel Eens; Tapio Eeva; Bruno Faivre; Peter N. Ferns; Jukka T. Forsman; Eduardo Garcia-del-Rey; Aya Goldshtein; Anne E. Goodenough; Andrew G. Gosler; Arnaud Grégoire

Abstract The increase in size of human populations in urban and agricultural areas has resulted in considerable habitat conversion globally. Such anthropogenic areas have specific environmental characteristics, which influence the physiology, life history, and population dynamics of plants and animals. For example, the date of bud burst is advanced in urban compared to nearby natural areas. In some birds, breeding success is determined by synchrony between timing of breeding and peak food abundance. Pertinently, caterpillars are an important food source for the nestlings of many bird species, and their abundance is influenced by environmental factors such as temperature and date of bud burst. Higher temperatures and advanced date of bud burst in urban areas could advance peak caterpillar abundance and thus affect breeding phenology of birds. In order to test whether laying date advance and clutch sizes decrease with the intensity of urbanization, we analyzed the timing of breeding and clutch size in relation to intensity of urbanization as a measure of human impact in 199 nest box plots across Europe, North Africa, and the Middle East (i.e., the Western Palearctic) for four species of hole‐nesters: blue tits (Cyanistes caeruleus), great tits (Parus major), collared flycatchers (Ficedula albicollis), and pied flycatchers (Ficedula hypoleuca). Meanwhile, we estimated the intensity of urbanization as the density of buildings surrounding study plots measured on orthophotographs. For the four study species, the intensity of urbanization was not correlated with laying date. Clutch size in blue and great tits does not seem affected by the intensity of urbanization, while in collared and pied flycatchers it decreased with increasing intensity of urbanization. This is the first large‐scale study showing a species‐specific major correlation between intensity of urbanization and the ecology of breeding. The underlying mechanisms for the relationships between life history and urbanization remain to be determined. We propose that effects of food abundance or quality, temperature, noise, pollution, or disturbance by humans may on their own or in combination affect laying date and/or clutch size.


Global Change Biology | 2015

Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest

Adriano Mazziotta; María Triviño; Olli-Pekka Tikkanen; Jari Kouki; Harri Strandman; Mikko Mönkkönen

Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate change is determined by several interacting factors including dispersal and human land use. Designing effective conservation strategies at regional scales to improve landscape suitability requires measuring the vulnerabilities of specific regions to climate change and determining their conservation capacities. Although methods for defining vulnerability categories are available, methods for doing this in a systematic, cost-effective way have not been identified. Here, we use an ecosystem model to define the potential resilience of the Finnish forest landscape by relating its current conservation capacity to its vulnerability to climate change. In applying this framework, we take into account the responses to climate change of a broad range of red-listed species with different niche requirements. This framework allowed us to identify four categories in which representation in the landscape varies among three IPCC emission scenarios (B1, low; A1B, intermediate; A2, high emissions): (i) susceptible (B1 = 24.7%, A1B = 26.4%, A2 = 26.2%), the most intact forest landscapes vulnerable to climate change, requiring management for heterogeneity and resilience; (ii) resilient (B1 = 2.2%, A1B = 0.5%, A2 = 0.6%), intact areas with low vulnerability that represent potential climate refugia and require conservation capacity maintenance; (iii) resistant (B1 = 6.7%, A1B = 0.8%, A2 = 1.1%), landscapes with low current conservation capacity and low vulnerability that are suitable for restoration projects; (iv) sensitive (B1 = 66.4%, A1B = 72.3%, A2 = 72.0%), low conservation capacity landscapes that are vulnerable and for which alternative conservation measures are required depending on the intensity of climate change. Our results indicate that the Finnish landscape is likely to be dominated by a very high proportion of sensitive and susceptible forest patches, thereby increasing uncertainty for landscape managers in the choice of conservation strategies.


European Journal of Forest Research | 2014

Modeling the effects of climate change and management on the dead wood dynamics in boreal forest plantations

Adriano Mazziotta; Mikko Mönkkönen; Harri Strandman; Johanna Routa; Olli-Pekka Tikkanen; Seppo Kellomäki

AbstractnThe present research examines the joint effects of climate change and management on the dead wood dynamics of the main tree species of the Finnish boreal forests via a forest ecosystem simulator. Tree processes are analyzed in stands subject to multiple biotic and abiotic environmental factors. A special focus is on the implications for biodiversity conservation thereof. Our results predict that in boreal forests, climate change will speed up tree growth and accumulation ending up in a higher stock of dead wood available as habitat for forest-dwelling species, but the accumulation processes will be much smaller in the working landscape than in set-asides. Increased decomposition rates driven by climate change for silver birch and Norway spruce will likely reduce the time the dead wood stock is available for dead wood-associated species. While for silver birch, the decomposition rate will be further increased in set-aside in relation to stands under ordinary management, for Norway spruce, set-asides can counterbalance the enhanced decomposition rate due to climate change thereby permitting a longer persistence of different decay stages of dead wood.

Collaboration


Dive into the Mikko Mönkkönen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

María Triviño

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jari Kouki

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Olli-Pekka Tikkanen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Maiju Peura

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar

Pasi Reunanen

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge