Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Tutino is active.

Publication


Featured researches published by Maria Tutino.


Chemosphere | 2010

Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy).

M. Caselli; Gianluigi de Gennaro; Annalisa Marzocca; Livia Trizio; Maria Tutino

A BTEX monitoring campaign, consisting of two weekly periods, was carried out in Bari, south-eastern Italy, in order to evaluate the impact of the vehicular traffic on the air quality at the main access roads of the city. Twenty-one sampling sites were selected: the pollution produced by the traffic in the vicinity of all exits from the ring road and some access roads to the city, those with higher traffic density, were monitored. Contemporarily the main meteorological parameters (ambient temperature, wind, atmospheric pressure and natural radioactivity) were investigated. It was found that in the same traffic conditions, barriers, buildings and local meteorological conditions can have important effects on the atmospheric dispersion of pollutants. This situation is more critical in downtown where narrow roads and high buildings avoid an efficient dispersion producing higher levels of BTEX. High spatial resolution monitoring allowed both detecting the most critical areas of the city with high precision and obtaining information on the mean level of pollution, meaning air quality standard of the city. The same concentration pattern and the correlation among BTEX levels in all sites confirmed the presence of a single source, the vehicular traffic, having a strong impact on air quality.


Environmental Research | 2009

Particulate PAHs in two urban areas of Southern Italy: Impact of the sources, meteorological and background conditions on air quality.

M. Amodio; M. Caselli; Gianluigi de Gennaro; Maria Tutino

The present work studied how much the meteorological parameters and the emission sources can influence the particulate polycyclic aromatic hydrocarbons (Invalid Journal Information PAHs) concentrations in two areas located in Southern Italy (Bari and Taranto). It was found that when the vehicular traffic is the main source of PAHs, there is a negative correlation between ambient temperature, wind speed and PAHs concentration (Bari). This is because these parameters are generally correlated with the dispersion capacity of the atmosphere. In the presence of a large industrial area, the wind direction becomes an important parameter able to determinate large changes in PAHs concentrations. This happened in Taranto where PAHs concentrations are exceptionally high. During the study the seasonal trend of particulate PAHs and PM10 was compared. PM10 did not show a significant seasonal cycle during the year because it is conditioned from a high regional aerosol background, especially during the summertime. On the contrary, particulate PAHs exerted distinct seasonal variation with higher concentrations in the winter and lower concentration during other months of the year. This evidence suggested that PAHs concentrations can be considered a more reliable index for air-quality assessment. In order to identify an index that considers the contributions of other particulate PAHs, it is necessary to calculate the carcinogenic potency of total PAHs (i.e., total BaPeq) obtained by the sum of the benzo[a]pyrene equivalent concentration (BaPeq) for each PAH.


Sensors | 2013

Gas Chromatography Analysis with Olfactometric Detection (GC-O) as a Useful Methodology for Chemical Characterization of Odorous Compounds

Magda Brattoli; Ezia Cisternino; Paolo Rosario Dambruoso; Gianluigi de Gennaro; Pasquale Giungato; Antonio Mazzone; Jolanda Palmisani; Maria Tutino

The gas chromatography-olfactometry (GC-O) technique couples traditional gas chromatographic analysis with sensory detection in order to study complex mixtures of odorous substances and to identify odor active compounds. The GC-O technique is already widely used for the evaluation of food aromas and its application in environmental fields is increasing, thus moving the odor emission assessment from the solely olfactometric evaluations to the characterization of the volatile components responsible for odor nuisance. The aim of this paper is to describe the state of the art of gas chromatography-olfactometry methodology, considering the different approaches regarding the operational conditions and the different methods for evaluating the olfactometric detection of odor compounds. The potentials of GC-O are described highlighting the improvements in this methodology relative to other conventional approaches used for odor detection, such as sensoristic, sensorial and the traditional gas chromatographic methods. The paper also provides an examination of the different fields of application of the GC-O, principally related to fragrances and food aromas, odor nuisance produced by anthropic activities and odorous compounds emitted by materials and medical applications.


International Journal of Environmental Research and Public Health | 2013

Indoor and Outdoor Monitoring of Volatile Organic Compounds in School Buildings: Indicators Based on Health Risk Assessment to Single out Critical Issues

Gianluigi de Gennaro; Genoveffa Farella; Annalisa Marzocca; Antonio Mazzone; Maria Tutino

Children are more sensitive to pollutants than adults and yet they spend large amounts of time in school environments where they are exposed to unknown levels of indoor pollutants. This study investigated the concentrations of the most abundant volatile organic compounds (VOCs) in eight naturally ventilated school buildings in Italy. The schools were chosen to include areas with different urbanization and traffic density characteristics in order to gather a more diverse picture of exposure risks in the different areas of the city. VOCs were sampled for one week in the presence/absence of pupils using diffusive samplers suitable for thermal desorption inside three classrooms at each school. The samples were then analyzed with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). In addition, outdoor measurements were carried out in the yard at each school. VOC identification and quantification, and indoor/outdoor concentration plots were used to identify pollutant sources. While some classrooms were found to have very low VOC levels, others had a significant indoor contribution or a prevalent outdoor contribution. High concentrations of terpenes were found in all monitored classrooms: α-pinene and limonene were in the range of 6.55–34.18 µg/m3 and 11.11–25.42 µg/m3 respectively. Outdoor concentrations were lower than indoors for each monitored school. Indicators based on health risk assessment for chronic health effects associated with VOCs (either carcinogenic or non-carcinogenic) were proposed to rank sites according to their hazard level.


Analytical and Bioanalytical Chemistry | 2010

Chemical characterization of exhaled breath to differentiate between patients with malignant plueral mesothelioma from subjects with similar professional asbestos exposure

G. de Gennaro; Silvano Dragonieri; Francesco Longobardi; M. Musti; G. Stallone; Livia Trizio; Maria Tutino

Malignant pleural mesothelioma (MPM) is an aggressive tumour whose main aetiology is the long-term exposure to asbestos fibres. The diagnostic procedure of MPM is difficult and often requires invasive approaches; therefore, it is clinically important to find accurate markers for MPM by new noninvasive methods that may facilitate the diagnostic process and identify patients at an earlier stage. In the present study, the exhaled breath of 13 patients with histology-established diagnosis of MPM, 13 subjects with long-term certified professional exposure to asbestos (EXP) and 13 healthy subjects without exposure to asbestos (healthy controls, HC) were analysed. An analytical procedure to determine volatile organic compounds by sampling of air on a bed of solid sorbent and thermal desorption GC-MS analysis was developed in order to identify the compounds capable of discriminating among the three groups. The application of univariate (ANOVA) and multivariate statistical treatments (PCA, DFA and CP-ANN) showed that cyclopentane and cyclohexane were the dominant variables able to discriminate among the three groups. In particular, it was found that cyclohexane is the only compound able to differentiate the MPM group from the other two; therefore, it can be a possible marker of MPM. Cyclopentane is the dominant compound in the discrimination between EXP and the other groups (MPM and HC); then, it can be considered a good indicator for long-term asbestos exposure. This result suggests the need to perform frequent and thorough investigations on people exposed to asbestos in order to constantly monitor their state of health or possibly to study the evolution of disease over time.


Talanta | 2007

Determination of polycyclic aromatic hydrocarbons (PAHs) in particulate matter collected with low volume samplers.

P. Bruno; M. Caselli; Gianluigi de Gennaro; Maria Tutino

The determination of polycyclic aromatic hydrocarbons (PAHs) contained in samples of particulate matter (PM), collected with low volume pumps, were carried out with an high sensitivity method that comes from several revisions of a previous method. The present work describes how, by using programmable temperature vaporization (PTV) and a mass selective detector with inert ionic source for the GC-MS analysis and the modifications of microwave-assisted extraction (MAE), the sensitivity of the method can be increased. The PAHs chosen for testing the method are: benzo[a]anthracene (BaA), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (Ip) and dibenzo[a,h]anthracene (DbA). They, in fact, belong to that group of substances that are the most harmful for human health for their carcinogenicity. PAHs recoveries for spiked standard solutions at different concentrations were between 95 and 100% with relative standard deviation ranging from 1 to 3%. The revised method was validated using a 1649a urban dust standard reference material (SRM). The results obtained were in good agreement with certified values. The high sensitivity of the method allows to carry out analyses using only a half of the sampled filter (usually 47mm diameter membranes). In this way, the other half can be used for the characterization of the other components of PM (heavy metals, organic carbon, ions, etc). The last step has been constituted by application of the optimized method on real samples collected in two cities located in Southern Italy (Bari and Taranto).


Environmental Research | 2009

Indoor contaminants from newspapers: VOCs emissions in newspaper stands

M. Caselli; Gianluigi de Gennaro; Maria Rosaria Saracino; Maria Tutino

Mean volatile organic compound (VOC) concentrations in 16 newspaper stands and in two printing shops were monitored for the purpose of quantifying the various VOCs in these areas and to relate the results. In each site halogenated, oxygenated, aliphatic, and aromatic compounds were monitored during one workweek. They were sampled with diffusive samplers for thermal desorption and analysed by GC-MS. The results showed that in all newspaper stands the indoor levels of toluene were much higher than the outdoor levels; some sites had toluene indoor concentrations 100 times higher than their correspondent outdoor levels. The investigations in two printing shops confirmed that newspapers, in particular the inks, are the main sources of toluene in the newspaper stands.


Journal of Breath Research | 2015

An electronic nose in the discrimination of obese patients with and without obstructive sleep apnoea.

Silvano Dragonieri; Francesca Porcelli; Francesco Longobardi; Pierluigi Carratù; Maria Aliani; Valentina Anna Ventura; Maria Tutino; Vitaliano Nicola Quaranta; Onofrio Resta; Gianluigi de Gennaro

Exhaled breath contains thousands of volatile organic compounds (VOCs) in gaseous form, which may be used as markers of airway inflammation and lung disease. Electronic noses enable quick and real-time pattern analysis of VOC spectra. It has been shown that the exhaled breath of patients with obstructive sleep apnoea (OSA) differs from that of non-obese controls. We aimed to assess the influence of obesity in the composition of exhaled VOCs by comparing obese subjects with and without OSA. Moreover, we aimed to identify the discriminant VOCs in the two groups.19 obese patients with established OSA (OO; age 51.2 ± 6.8; body mass index (BMI) 34.3 ± 3.5), 14 obese controls without OSA (ONO; age 46.5 ± 7.6; BMI 33.5 ± 4.1) and 20 non-obese healthy controls (HC; age 41.1 ± 12.6; BMI 24.9 ± 3.8) participated in a cross-sectional study. Exhaled breath was collected by a previously described method and sampled by using an electronic nose (Cyranose 320) and by gas chromatography-mass spectrometry (GC-MS) analysis. Breathprints were analyzed by canonical discriminant analysis on principal component reduction. Cross-validation accuracy (CVA) was calculated. Breathprints from the HC group were separated from those of OO (CVA = 97.4%) and ONO (CVA = 94.1%). Breathprints from OO were moderately separated from those of ONO (CVA = 67.6%).The presence of OSA alters the exhaled VOC pattern in obese subjects. The incomplete separation of breathprints between OO and ONO may be due to the same underlying inflammation caused by obesity.


Environmental Science and Pollution Research | 2014

Indoor air quality (IAQ) assessment in a multistorey shopping mall by high-spatial-resolution monitoring of volatile organic compounds (VOC)

M. Amodio; Paolo Rosario Dambruoso; Gianluigi de Gennaro; L. De Gennaro; A. Demarinis Loiotile; Annalisa Marzocca; F. Stasi; Livia Trizio; Maria Tutino

In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography–mass spectrometry (GC–MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.


International Journal of Environmental Research and Public Health | 2015

Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System

Gianluigi de Gennaro; Paolo Rosario Dambruoso; Alessia Di Gilio; Valerio Di Palma; Annalisa Marzocca; Maria Tutino

Around 50% of the world’s population, particularly in developing countries, uses biomass as one of the most common fuels. Biomass combustion releases a considerable amount of various incomplete combustion products, including particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). The paper presents the results of Indoor Air Quality (IAQ) measurements in six houses equipped with wood burning stoves or fireplaces as heating systems. The houses were monitored for 48-h periods in order to collect PM10 samples and measure PAH concentrations. The average, the maximum and the lowest values of the 12-h PM10 concentration were 68.6 μg/m3, 350.7 μg/m3 and 16.8 μg/m3 respectively. The average benzo[a]pyrene 12-h concentration was 9.4 ng/m3, while the maximum and the minimum values were 24.0 ng/m3 and 1.5 ng/m3, respectively. Continuous monitoring of PM10, PAHs, Ultra Fine Particle (UFP) and Total Volatile Organic Compounds (TVOC) was performed in order to study the progress of pollution phenomena due to biomass burning, their trends and contributions to IAQ. The results show a great heterogeneity of impacts on IAQ in terms of magnitude and behavior of the considered pollutants’ concentrations. This variability is determined by not only different combustion technologies or biomass quality, but overall by different ignition mode, feeding and flame management, which can also be different for the same house. Moreover, room dimensions and ventilation were significant factors for pollution dispersion. The increase of PM10, UFP and PAH concentrations, during lighting, was always detected and relevant. Continuous monitoring allowed singling out contributions of other domestic sources of considered pollutants such as cooking and cigarettes. Cooking contribution produced an impact on IAQ in same cases higher than that of the biomass heating system.

Collaboration


Dive into the Maria Tutino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge