Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria V. Fawaz is active.

Publication


Featured researches published by Maria V. Fawaz.


ACS Medicinal Chemistry Letters | 2012

Evaluation of [11C]N-Methyl Lansoprazole as a Radiopharmaceutical for PET Imaging of Tau Neurofibrillary Tangles

Xia Shao; Garrett M. Carpenter; Timothy J. Desmond; Phillip Sherman; Carole A. Quesada; Maria V. Fawaz; Allen F. Brooks; Michael R. Kilbourn; Roger L. Albin; Kirk A. Frey; Peter Scott

[(11)C]N-Methyl lansoprazole ([(11)C]NML, 3) was synthesized and evaluated as a radiopharmaceutical for quantifying tau neurofibrillary tangle (NFT) burden using positron emission tomography (PET) imaging. [(11)C]NML was synthesized from commercially available lansoprazole in 4.6% radiochemical yield (noncorrected RCY, based upon [(11)C]MeI), 99% radiochemical purity, and 16095 Ci/mmol specific activity (n = 5). Log P was determined to be 2.18. A lack of brain uptake in rodent microPET imaging revealed [(11)C]NML to be a substrate for the rodent permeability-glycoprotein 1 (PGP) transporter, but this could be overcome by pretreating with cyclosporin A to block the PGP. Contrastingly, [(11)C]NML was not found to be a substrate for the primate PGP, and microPET imaging in rhesus revealed [(11)C]NML uptake in the healthy primate brain of ∼1600 nCi/cc maximum at 3 min followed by rapid egress to 500 nCi/cc. Comparative autoradiography between wild-type rats and transgenic rats expressing human tau (hTau +/+) revealed 12% higher uptake of [(11)C]NML in the cortex of brains expressing human tau. Further autoradiography with tau positive brain samples from progressive supranuclear palsy (PSP) patients revealed colocalization of [(11)C]NML with tau NFTs identified using modified Bielschowsky staining. Finally, saturation binding experiments with heparin-induced tau confirmed K d and Bmax values of [(11)C]NML as 700 pM and 0.214 fmol/μg, respectively.


ACS Chemical Neuroscience | 2014

High affinity radiopharmaceuticals based upon lansoprazole for PET imaging of aggregated tau in Alzheimer's disease and progressive supranuclear palsy: synthesis, preclinical evaluation, and lead selection.

Maria V. Fawaz; Allen F. Brooks; Melissa E. Rodnick; Garrett M. Carpenter; Xia Shao; Timothy J. Desmond; Phillip Sherman; Carole A. Quesada; Brian G. Hockley; Michael R. Kilbourn; Roger L. Albin; Kirk A. Frey; Peter Scott

Abnormally aggregated tau is the hallmark pathology of tauopathy neurodegenerative disorders and is a target for development of both diagnostic tools and therapeutic strategies across the tauopathy disease spectrum. Development of carbon-11- or fluorine-18-labeled radiotracers with appropriate affinity and specificity for tau would allow noninvasive quantification of tau burden using positron emission tomography (PET) imaging. We have synthesized [(18)F]lansoprazole, [(11)C]N-methyl lansoprazole, and [(18)F]N-methyl lansoprazole and identified them as high affinity radiotracers for tau with low to subnanomolar binding affinities. Herein, we report radiosyntheses and extensive preclinical evaluation with the aim of selecting a lead radiotracer for translation into human PET imaging trials. We demonstrate that [(18)F]N-methyl lansoprazole, on account of the favorable half-life of fluorine-18 and its rapid brain entry in nonhuman primates, favorable kinetics, low white matter binding, and selectivity for binding to tau over amyloid, is the lead compound for progression into clinical trials.


Nuclear Medicine and Biology | 2014

Synthesis and evaluation of [11C]PyrATP-1, a novel radiotracer for PET imaging of glycogen synthase kinase-3β (GSK-3β)

Erin L. Cole; Xia Shao; Phillip Sherman; Carole A. Quesada; Maria V. Fawaz; Timothy J. Desmond; Peter Scott

INTRODUCTION The dysfunction of glycogen synthase kinase-3β (GSK-3β) has been implicated in a number of diseases, including Alzheimers disease. The ability to non-invasively quantify GSK-3β activity in vivo is therefore of critical importance, and this work is focused upon development of inhibitors of GSK-3β radiolabeled with carbon-11 to examine quantification of the enzyme using positron emission tomography (PET) imaging. METHODS (11)C PyrATP-1 was prepared from the corresponding desmethyl-piperazine precursor in an automated synthesis module. In vivo rodent and primate imaging studies were conducted on a Concorde MicroPET P4 scanner to evaluate imaging properties and in vitro autoradiography studies with rat brain samples were carried out to examine specific binding. RESULTS 2035±518MBq (55±14mCi) of [(11)C]PyrATP-1 was obtained (1%-2% non-corrected radiochemical yield at end-of-synthesis based upon [(11)C]CO2) with high chemical (>95%) and radiochemical (>99%) purities, and good specific activities (143±52GBq/μmol (3874±1424Ci/mmol)), n=5. In vivo microPET imaging studies revealed poor brain uptake in rodents and non-human primates. Pretreatment of rodents with cyclosporin A resulted in moderately increased brain uptake suggesting Pgp transporter involvement. Autoradiography demonstrated high levels of specific binding in areas of the rodent brain known to be rich in GSK-3β. CONCLUSION (11)C PyrATP-1 is readily synthesized using standard carbon-11 radiochemistry. However the poor brain uptake in rodents and non-human primates indicates that the radiotracer is not suitable for the purposes of quantifying GSK-3β in neurological and psychiatric disorders.


Nuclear Medicine and Biology | 2013

Enhanced Radiosyntheses of [11C]Raclopride and [11C]DASB using Ethanolic Loop Chemistry

Xia Shao; Paul Schnau; Maria V. Fawaz; Peter Scott

INTRODUCTION To improve the synthesis and quality control of carbon-11 labeled radiopharmaceuticals, we report the fully automated loop syntheses of [¹¹C]raclopride and [¹¹C]DASB using ethanol as the only organic solvent for synthesis module cleaning, carbon-11 methylation, HPLC purification, and reformulation. METHODS Ethanolic loop chemistry is fully automated using a GE TRACERLab FX(C-Pro) synthesis module, and is readily adaptable to any other carbon-11 synthesis apparatus. Precursors (1 mg) were dissolved in ethanol (100 μL) and loaded into the HPLC loop. [¹¹C]MeOTf was passed through the HPLC loop and then the labeled products were purified by semi-preparative HPLC and reformulated into ethanolic saline. RESULTS Both [¹¹C]raclopride (3.7% RCY; >95% RCP; SA=20831 Ci/mmol; n=64) and [¹¹C]DASB, both with (3.0% RCY; >95% RCP; SA=15152Ci/mmol; n=9) and without (3.0% RCY; >95% RCP; SA=10931 Ci/mmol; n=3) sodium ascorbate, have been successfully prepared using the described methodology. Doses are suitable for human use and the described methods are now employed for routine clinical production of both radiopharmaceuticals at the University of Michigan. CONCLUSIONS Ethanolic loop chemistry is a powerful technique for preparing [¹¹C]raclopride and [¹¹C]DASB, and we are in the process of adapting it for other carbon-11 radiopharmaceuticals prepared in our laboratories ([¹¹C]PMP, [¹¹C]PBR28 etc.).


Applied Radiation and Isotopes | 2014

Ethanolic carbon-11 chemistry: The introduction of green radiochemistry

Xia Shao; Maria V. Fawaz; Keunsam Jang; Peter Scott

The principles of green chemistry have been applied to a radiochemistry setting. Eleven carbon-11 labeled radiopharmaceuticals have been prepared using ethanol as the only organic solvent throughout the entire manufacturing process. The removal of all other organic solvents from the process simplifies production and quality control (QC) testing, moving our PET Center towards the first example of a green radiochemistry laboratory. All radiopharmaceutical doses prepared are suitable for clinical use.


ACS Chemical Neuroscience | 2016

Synthesis and Evaluation of [18F]RAGER: A First Generation Small-Molecule PET Radioligand Targeting the Receptor for Advanced Glycation Endproducts

Brian P. Cary; Allen F. Brooks; Maria V. Fawaz; Lindsey R. Drake; Timothy J. Desmond; Phillip Sherman; Carole A. Quesada; Peter Scott

The receptor for advanced glycation endproducts (RAGE) is a 35 kDa transmembrane receptor that belongs to the immunoglobulin superfamily of cell surface molecules. Its role in Alzheimers disease (AD) is complex, but it is thought to mediate influx of circulating amyloid-β into the brain as well as amplify Aβ-induced pathogenic responses. RAGE is therefore of considerable interest as both a diagnostic and a therapeutic target in AD. Herein we report the synthesis and preliminary preclinical evaluation of [(18)F]RAGER, the first small molecule PET radiotracer for RAGE (Kd = 15 nM). Docking studies proposed a likely binding interaction between RAGE and RAGER, [(18)F]RAGER autoradiography showed colocalization with RAGE identified by immunohistochemistry in AD brain samples, and [(18)F]RAGER microPET confirmed CNS penetration and increased uptake in areas of the brain known to express RAGE. This first generation radiotracer represents initial proof-of-concept and a promising first step toward quantifying CNS RAGE activity using PET. However, there were high levels of nonspecific [(18)F]RAGER binding in vitro, likely due to its high log P (experimental log P = 3.5), and rapid metabolism of [(18)F]RAGER in rat liver microsome studies. Therefore, development of second generation ligands with improved imaging properties would be advantageous prior to anticipated translation into clinical PET imaging studies.


ACS Medicinal Chemistry Letters | 2015

Targeting Metal-Aβ Aggregates with Bifunctional Radioligand [11C]L2-b and a Fluorine-18 Analogue [18F]FL2-b

Brian P. Cary; Allen F. Brooks; Maria V. Fawaz; Xia Shao; Timothy J. Desmond; Garrett M. Carpenter; Phillip Sherman; Carole A. Quesada; Roger L. Albin; Peter Scott

Interest in quantifying metal-Aβ species in vivo led to the synthesis and evaluation of [11C]L2-b and [18F]FL2-b as radiopharmaceuticals for studying the metallobiology of Alzheimer’s disease (AD) using positron emission tomography (PET) imaging. [11C]L2-b was synthesized in 3.6% radiochemical yield (nondecay corrected, n = 3), >95% radiochemical purity, from the corresponding desmethyl precursor. [18F]FL2-b was synthesized in 1.0% radiochemical yield (nondecay corrected, n = 3), >99% radiochemical purity, from a 6-chloro pyridine precursor. Autoradiography experiments with AD positive and healthy control brain samples were used to determine the specificity of binding for the radioligands compared to [11C]PiB, a known imaging agent for β-amyloid (Aβ) aggregates. The Kd for [11C]L2-b and [18F]FL2-b were found to be 3.5 and 9.4 nM, respectively, from those tissue studies. Displacement studies of [11C]L2-b and [18F]FL2-b with PiB and AV-45 determined that L2-b binds to Aβ aggregates differently from known radiopharmaceuticals. Finally, brain uptake of [11C]L2-b was examined through microPET imaging in healthy rhesus macaque, which revealed a maximum uptake at 2.5 min (peak SUV = 2.0) followed by rapid egress (n = 2).


Molecular Pharmaceutics | 2018

Effect of Synthetic High Density Lipoproteins Modification with Polyethylene Glycol on Pharmacokinetics and Pharmacodynamics

Dan Li; Maria V. Fawaz; Emily E. Morin; Ran Ming; Denis Sviridov; Jie Tang; Rose Ackermann; Karl F. Olsen; Alan T. Remaley; Anna Schwendeman

Synthetic high density lipoprotein nanoparticles (sHDLs) capable of mobilizing excess cholesterol from atherosclerotic arteries and delivering it to the liver for elimination have been shown to reduce plaque burden in patients. Unfortunately, sHDLs have a narrow therapeutic index and relative to the endogenous HDL shorter circulation half-life. Surface modification with polyethylene glycol (PEG) was investigated for its potential to extend sHDL circulation in vivo. Various amounts (2.5, 5, and 10%) and different chain lengths (2 and 5 kDa) of PEG-modified lipids were incorporated in sHDLs lipid membrane. Incorporating PEG did not reduce the ability of sHDL to facilitate cholesterol efflux, nor did it inhibit cholesterol uptake by the liver cells. By either adding more PEG or using PEG of longer chain lengths, the circulation half-life was extended. Addition of PEG also increased the area under the curve for the phospholipid component of sHDL (p < 0.05), but not for the apolipoprotein A-I peptide component of sHDL, suggesting sHDL is remodeled by endogenous lipoproteins in vivo. The extended phospholipid circulation led to a higher mobilization of plasma free cholesterol, a biomarker for facilitation of reverse cholesterol transport. The area under the cholesterol mobilization increased about 2-4-fold (p < 0.05), with greater increases observed for longer PEG chains and higher molar percentages of incorporated PEGylated lipids. Mobilized cholesterol was associated primarily with the HDL fraction, led to a transient increase in VLDL cholesterol, and returned to baseline 24 h postdose. Overall, PEGylation of sHDL led to beneficial changes in sHDL particle pharmacokinetic and pharmacodynamic behaviors.


The Journal of Nuclear Medicine | 2014

Radiosynthesis of [11C]PyrATP1, a novel radiotracer targeting the ATP-binding site of GSK-3{beta}

Erin L. Cole; Xia Shao; Maria V. Fawaz; Peter Scott


EJNMMI Radiopharmacy and Chemistry | 2018

Futureproofing [18F]Fludeoxyglucose manufacture at an Academic Medical Center

Alexandra R Sowa; Isaac M. Jackson; Timothy J. Desmond; Jeremiah Alicea; Anthony J. Mufarreh; Jonathan M. Pham; Jenelle Stauff; Wade P Winton; Maria V. Fawaz; Bradford D. Henderson; Brian G. Hockley; Virginia Rogers; Robert A. Koeppe; Peter Scott

Collaboration


Dive into the Maria V. Fawaz's collaboration.

Top Co-Authors

Avatar

Peter Scott

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Xia Shao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge