Mariam Almureikhi
Hamad Medical Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mariam Almureikhi.
American Journal of Medical Genetics Part A | 2004
Muhammad Faiyaz-Ul-Haque; Syed H. E. Zaidi; Mariam Al-Ali; Mariam Almureikhi; Shelley J. Kennedy; Ghalia M.H Al-Thani; Lap-Chee Tsui; Ahmad S. Teebi
The Ehlers–Danlos syndrome (EDS) is a heterogeneous group of heritable connective tissue disorders characterized by skin hyperextensibility, joint hypermobility, and tissue fragility. Several genes have been implicated to result in EDS phenotypes. The progeroid type of EDS is characterized by wrinkled, loose skin on the face, curly fine hair, scanty eyebrows and eyelashes, in addition to the classical features of EDS. Here we describe two similarly affected individuals in two sibships of a large consanguineous family from Qatar. DNA samples from affected and unaffected members of the family were analyzed for homozygosity of polymorphic markers associated with genes that have been implicated in EDS. Among 28 markers analyzed, homozygosity was only observed for D5S469 and D5S2111, which were markers for galactosyltransferase‐I (B4GALT7) located on chromosome 5q35.2, where the previously reported progeroid‐like variant of EDS has been mapped. Exons harboring the coding regions and exon–intron junctions of B4GALT7 were amplified by PCR and examined for mutations. A homozygous misssense C to T substitution at nucleotide 808 in the coding region was discovered in both affected individuals. The carrier parents were heterozygous for this mutation, which was not found among 76 DNA samples from control individuals of the same ethnicity. Segregation of this novel mutation in the family further confirmed the allelic variant and its recessive mode of inheritance in this type of EDS. The C to T substitution results in an arginine to cysteine change at amino acid residue 270 that is located in the catalytically active extracellular C‐terminal domain. This change could result in abnormal protein folding and/or aberrant interactions of mutated galactosyltransferase‐I with other extracellular matrix proteins leading to the development of a progeroid‐like phenotype in affected individuals.
Human Mutation | 2013
Gijs W.E. Santen; Emmelien Aten; Anneke T. Vulto-van Silfhout; Caroline Pottinger; Bregje W.M. Bon; Ivonne J.H.M. Minderhout; Ronelle Snowdowne; Christian A.C. Lans; Merel W. Boogaard; Margot M.L. Linssen; Linda Vijfhuizen; Michiel J.R. Wielen; M.J. (Ellen) Vollebregt; Martijn H. Breuning; Marjolein Kriek; Arie van Haeringen; Johan T. den Dunnen; Alexander Hoischen; Jill Clayton-Smith; Bert B.A. Vries; Raoul C. M. Hennekam; Martine J. van Belzen; Mariam Almureikhi; Anwar Baban; Mafalda Barbosa; Tawfeg Ben-Omran; Katherine Berry; Stefania Bigoni; Odile Boute; Louise Brueton
De novo germline variants in several components of the SWI/SNF‐like BAF complex can cause Coffin–Siris syndrome (CSS), Nicolaides–Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. We screened 63 patients with a clinical diagnosis of CSS for these genes (ARID1A, ARID1B, SMARCA2, SMARCA4, SMARCB1, and SMARCE1) and identified pathogenic variants in 45 (71%) patients. We found a high proportion of variants in ARID1B (68%). All four pathogenic variants in ARID1A appeared to be mosaic. By using all variants from the Exome Variant Server as test data, we were able to classify variants in ARID1A, ARID1B, and SMARCB1 reliably as being pathogenic or nonpathogenic. For SMARCA2, SMARCA4, and SMARCE1 several variants in the EVS remained unclassified, underlining the importance of parental testing. We have entered all variant and clinical information in LOVD‐powered databases to facilitate further genotype–phenotype correlations, as these will become increasingly important because of the uptake of targeted and untargeted next generation sequencing in diagnostics. The emerging phenotype–genotype correlation is that SMARCB1 patients have the most marked physical phenotype and severe cognitive and growth delay. The variability in phenotype seems most marked in ARID1A and ARID1B patients. Distal limbs anomalies are most marked in ARID1A patients and least in SMARCB1 patients. Numbers are small however, and larger series are needed to confirm this correlation.
American Journal of Human Genetics | 2010
Natascia Anastasio; Tawfeg Ben-Omran; Ahmad S. Teebi; Kevin C.H. Ha; Emilie Lalonde; Rehab Ali; Mariam Almureikhi; Vazken M. Der Kaloustian; Junhui Liu; David S. Rosenblatt; Jacek Majewski; Loydie A. Jerome-Majewska
Van Den Ende-Gupta syndrome (VDEGS) is an extremely rare autosomal-recessive disorder characterized by distinctive craniofacial features, which include blepharophimosis, malar and/or maxillary hypoplasia, a narrow and beaked nose, and an everted lower lip. Other features are arachnodactyly, camptodactyly, peculiar skeletal abnormalities, and normal development and intelligence. We present molecular data on four VDEGS patients from three consanguineous Qatari families belonging to the same highly inbred Bedouin tribe. The patients were genotyped with SNP microarrays, and a 2.4 Mb homozygous region was found on chromosome 22q11 in an area overlapping the DiGeorge critical region. This region contained 44 genes, including SCARF2, a gene that is expressed during development in a number of mouse tissues relevant to the symptoms described above. Sanger sequencing identified a missense change, c.773G>A (p.C258Y), in exon 4 in the two closely related patients and a 2 bp deletion in exon 8, c.1328_1329delTG (p.V443DfsX83), in two unrelated individuals. In parallel with the candidate gene approach, complete exome sequencing was used to confirm that SCARF2 was the gene responsible for VDEGS. SCARF2 contains putative epidermal growth factor-like domains in its extracellular domain, along with a number of positively charged residues in its intracellular domain, indicating that it may be involved in intracellular signaling. However, the function of SCARF2 has not been characterized, and this study reports that phenotypic effects can be associated with defects in the scavenger receptor F family of genes.
American Journal of Medical Genetics Part A | 2015
Yuri A. Zarate; Hazel Perry; Tawfeg Ben-Omran; Elizabeth A. Sellars; Quinn Stein; Mariam Almureikhi; Kirk Simmons; Ophir D. Klein; Jennifer L. Fish; Murray Feingold; Jessica Douglas; Michael C. Kruer; Yue Si; Rong Mao; Dianalee McKnight; Federica Gibellini; Kyle Retterer; Anne Slavotinek
The SATB2‐associated syndrome (SAS) was recently proposed as a clinically recognizable syndrome that results from deleterious alterations of the SATB2 gene in humans. Although interstitial deletions at 2q33 encompassing SATB2, either alone or contiguously with other genes, have been reported before, there is limited literature regarding intragenic mutations of this gene and the resulting phenotype. We describe five patients in whom whole exome sequencing identified five unique de novo mutations in the SATB2 gene (one splice site, one frameshift, and three nonsense mutations). The five patients had overlapping features that support the characteristic features of the SAS: intellectual disability with limited speech development and craniofacial abnormalities including cleft palate, dysmorphic features, and dental abnormalities. Furthermore, Patient 1 also had features not previously described that represent an expansion of the phenotype. Osteopenia was seen in two of the patients, suggesting that this finding could be added to the list of distinctive findings. We provide supporting evidence that analysis for deletions or point mutations in SATB2 should be considered in children with intellectual disability and severely impaired speech, cleft or high palate, teeth abnormalities, and osteopenia.
American Journal of Medical Genetics Part A | 2011
Tawfeg Ben-Omran; Rehab Ali; Mariam Almureikhi; Seham Alameer; Muna Al-Saffar; Christopher A. Walsh; Jillian M. Felie; Ahmad S. Teebi
Hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome [also known as Woodhouse–Sakati syndrome (WSS)] is a rare autosomal recessive neuroendocrine and ectodermal disorder. The syndrome was first described by Woodhouse and Sakati in 1983, and 47 patients from 23 families have been reported so far. We report on an additional seven patients (four males and three females) from two highly consanguineous Arab families from Qatar, presenting with a milder phenotype of WSS. These patients show the spectrum of clinical features previously found in WSS, but lack evidence of diabetes mellitus and extrapyramidal symptoms. These two new families further illustrate the natural course and the interfamilial phenotypic variability of WSS that may lead to challenges in making the diagnosis. In addition, our study suggests that WSS may not be as infrequent in the Arab world as previously thought.
American Journal of Human Genetics | 2017
Isaac Marin-Valencia; Andreas Gerondopoulos; Maha S. Zaki; Tawfeg Ben-Omran; Mariam Almureikhi; Ercan Demir; Alicia Guemez-Gamboa; Anne Gregor; Mahmoud Y. Issa; Bart Appelhof; Susanne Roosing; Damir Musaev; Basak Rosti; Sara Wirth; Valentina Stanley; Frank Baas; Francis A. Barr; Joseph G. Gleeson
Pontocerebellar hypoplasia (PCH) represents a group of recessive developmental disorders characterized by impaired growth of the pons and cerebellum, which frequently follows a degenerative course. Currently, there are 10 partially overlapping clinical subtypes and 13 genes known mutated in PCH. Here, we report biallelic TBC1D23 mutations in six individuals from four unrelated families manifesting a non-degenerative form of PCH. In addition to reduced volume of pons and cerebellum, affected individuals had microcephaly, psychomotor delay, and ataxia. In zebrafish, tbc1d23 morphants replicated the human phenotype showing hindbrain volume loss. TBC1D23 localized at the trans-Golgi and was regulated by the small GTPases Arl1 and Arl8, suggesting a role in trans-Golgi membrane trafficking. Altogether, this study provides a causative link between TBC1D23 mutations and PCH and suggests a less severe clinical course than other PCH subtypes.
Cold Spring Harb Mol Case Stud | 2015
Yizhou Ye; Megan T. Cho; Kyle Retterer; Nora Alexander; Tawfeg Ben-Omran; Mariam Almureikhi; Ingrid Cristian; Patricia G. Wheeler; Carrie Crain; Dina J. Zand; Veronique Weinstein; Hilary Vernon; Rebecca McClellan; Vidya Krishnamurthy; Patrik Vitazka; Francisca Millan; Wendy K. Chung
Seven patients with similar phenotypes of developmental delay and microcephaly were found by whole-exome sequencing to have de novo loss-of-function mutations in POGZ. POGZ is a pogo transposable element-derived protein with a zinc finger cluster. The protein is involved in normal kinetochore assembly and mitotic sister chromatid cohesion and mitotic chromosome segregation. POGZ deficiency may affect mitosis, disrupting brain development and function.
American Journal of Medical Genetics Part A | 2010
Rehab Ali; Mariam Almureikhi; Fatima Al-Musaifri; Venkatraman Bhat; Ahmad S. Teebi; Tawfeg Ben-Omran
Van Den Ende–Gupta syndrome (VDEGS) is an infrequently described disorder characterized by arachnodactyly, camptodactyly, blepharophimosis, malar hypoplasia, narrow nasal bridge, convex nasal ridge, and everted lower lip. Patients show normal growth and cognition. We report on three male and three female cases from four consanguineous families, of which three belong to the same highly inbred tribe from Qatar. The phenotype in the patients is remarkably homogeneous. VDEGS has been suggested both to follow an autosomal recessive and autosomal dominant pattern of inheritance, but our observations suggest an autosomal recessive pattern of inheritance, although genetic heterogeneity cannot be excluded.
Genetics in Medicine | 2018
Sateesh Maddirevula; Fatema Alzahrani; Shams Anazi; Mariam Almureikhi; Tawfeg Ben-Omran; Ghada M.H. Abdel-Salam; Mais Hashem; Niema Ibrahim; Firdous Abdulwahab; Neama Meriki; Fahad A. Bashiri; Meow-Keong Thong; Premala Muthukumarasamy; Rifhan Azwani Mazlan; Ranad Shaheen; Fowzan S. Alkuraya
PurposeGenome-wide association studies (GWAS) have been instrumental to our understanding of the genetic risk determinants of complex traits. A common challenge in GWAS is the interpretation of signals, which are usually attributed to the genes closest to the polymorphic markers that display the strongest statistical association. Naturally occurring complete loss of function (knockout) of these genes in humans can inform GWAS interpretation by unmasking their deficiency state in a clinical context.MethodsWe exploited the unique population structure of Saudi Arabia to identify novel knockout events in genes previously highlighted in GWAS using combined autozygome/exome analysis.ResultsWe report five families with homozygous truncating mutations in genes that had only been linked to human disease through GWAS. The phenotypes observed in the natural knockouts for these genes (TRAF3IP2, FRMD3, RSRC1, BTBD9, and PXDNL) range from consistent with, to unrelated to, the previously reported GWAS phenotype.ConclusionWe expand the role of human knockouts in the medical annotation of the human genome, and show their potential value in informing the interpretation of GWAS of complex traits.
European Journal of Medical Genetics | 2017
Shenela Lakhani; Ryan Doan; Mariam Almureikhi; Jennifer N. Partlow; Muna Al Saffar; Mahmoud F. Elsaid; Nada Alaaraj; A. James Barkovich; Christopher A. Walsh; Tawfeg Ben-Omran
Arthrogryposis multiplex congenital, the occurrence of multiple joint contractures at birth, can in some cases be accompanied by insufficient myelination of peripheral nerves, muscular hypotonia, reduced tendon reflexes, and respiratory insufficiency. Recently mutations in the CASPR/CNTN1 complex have been associated with similar severe phenotypes and CNTNAP1 gene mutations, causing loss of the CASPR protein, were shown to cause severe, prenatal onset arthrogryposis multiplex congenita in four unrelated families. Here we report a consanguineous Arab family from Qatar with three children having an early lethal form of arthrogryposis multiplex congenita and a novel frameshift mutation in CNTNAP1. We further expand the existing CNTNAP1-associated phenotype to include profound cerebral and cerebellar atrophy.