Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rehab Ali is active.

Publication


Featured researches published by Rehab Ali.


American Journal of Human Genetics | 2010

Mutations in SCARF2 Are Responsible for Van Den Ende-Gupta Syndrome

Natascia Anastasio; Tawfeg Ben-Omran; Ahmad S. Teebi; Kevin C.H. Ha; Emilie Lalonde; Rehab Ali; Mariam Almureikhi; Vazken M. Der Kaloustian; Junhui Liu; David S. Rosenblatt; Jacek Majewski; Loydie A. Jerome-Majewska

Van Den Ende-Gupta syndrome (VDEGS) is an extremely rare autosomal-recessive disorder characterized by distinctive craniofacial features, which include blepharophimosis, malar and/or maxillary hypoplasia, a narrow and beaked nose, and an everted lower lip. Other features are arachnodactyly, camptodactyly, peculiar skeletal abnormalities, and normal development and intelligence. We present molecular data on four VDEGS patients from three consanguineous Qatari families belonging to the same highly inbred Bedouin tribe. The patients were genotyped with SNP microarrays, and a 2.4 Mb homozygous region was found on chromosome 22q11 in an area overlapping the DiGeorge critical region. This region contained 44 genes, including SCARF2, a gene that is expressed during development in a number of mouse tissues relevant to the symptoms described above. Sanger sequencing identified a missense change, c.773G>A (p.C258Y), in exon 4 in the two closely related patients and a 2 bp deletion in exon 8, c.1328_1329delTG (p.V443DfsX83), in two unrelated individuals. In parallel with the candidate gene approach, complete exome sequencing was used to confirm that SCARF2 was the gene responsible for VDEGS. SCARF2 contains putative epidermal growth factor-like domains in its extracellular domain, along with a number of positively charged residues in its intracellular domain, indicating that it may be involved in intracellular signaling. However, the function of SCARF2 has not been characterized, and this study reports that phenotypic effects can be associated with defects in the scavenger receptor F family of genes.


Molecular Psychiatry | 2017

Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield

Shamsa Anazi; Sateesh Maddirevula; Eissa Faqeih; Haifa Alsedairy; F. Alzahrani; Hanan E. Shamseldin; Nisha A. Patel; Mais Hashem; Niema Ibrahim; Firdous Abdulwahab; Nour Ewida; Hessa S. Alsaif; H Al sharif; W Alamoudi; Amal Y. Kentab; Fahad A. Bashiri; M Alnaser; Ali H. Alwadei; Majid Alfadhel; Wafaa Eyaid; Amal Hashem; A Al Asmari; Marwa Saleh; Abdulaziz Alsaman; K A Alhasan; M Alsughayir; M Al Shammari; Adel Mahmoud; Zuhair Al-Hassnan; Muneera Al-Husain

Intellectual disability (ID) is a measurable phenotypic consequence of genetic and environmental factors. In this study, we prospectively assessed the diagnostic yield of genomic tools (molecular karyotyping, multi-gene panel and exome sequencing) in a cohort of 337 ID subjects as a first-tier test and compared it with a standard clinical evaluation performed in parallel. Standard clinical evaluation suggested a diagnosis in 16% of cases (54/337) but only 70% of these (38/54) were subsequently confirmed. On the other hand, the genomic approach revealed a likely diagnosis in 58% (n=196). These included copy number variants in 14% (n=54, 15% are novel), and point mutations revealed by multi-gene panel and exome sequencing in the remaining 43% (1% were found to have Fragile-X). The identified point mutations were mostly recessive (n=117, 81%), consistent with the high consanguinity of the study cohort, but also X-linked (n=8, 6%) and de novo dominant (n=19, 13%). When applied directly on all cases with negative molecular karyotyping, the diagnostic yield of exome sequencing was 60% (77/129). Exome sequencing also identified likely pathogenic variants in three novel candidate genes (DENND5A, NEMF and DNHD1) each of which harbored independent homozygous mutations in patients with overlapping phenotypes. In addition, exome sequencing revealed de novo and recessive variants in 32 genes (MAMDC2, TUBAL3, CPNE6, KLHL24, USP2, PIP5K1A, UBE4A, TP53TG5, ATOH1, C16ORF90, SLC39A14, TRERF1, RGL1, CDH11, SYDE2, HIRA, FEZF2, PROCA1, PIANP, PLK2, QRFPR, AP3B2, NUDT2, UFC1, BTN3A2, TADA1, ARFGEF3, FAM160B1, ZMYM5, SLC45A1, ARHGAP33 and CAPS2), which we highlight as potential candidates on the basis of several lines of evidence, and one of these genes (SLC39A14) was biallelically inactivated in a potentially treatable form of hypermanganesemia and neurodegeneration. Finally, likely causal variants in previously published candidate genes were identified (ASTN1, HELZ, THOC6, WDR45B, ADRA2B and CLIP1), thus supporting their involvement in ID pathogenesis. Our results expand the morbid genome of ID and support the adoption of genomics as a first-tier test for individuals with ID.


American Journal of Medical Genetics Part A | 2011

Phenotypic heterogeneity in Woodhouse–Sakati syndrome: Two new families with a mutation in the C2orf37 gene

Tawfeg Ben-Omran; Rehab Ali; Mariam Almureikhi; Seham Alameer; Muna Al-Saffar; Christopher A. Walsh; Jillian M. Felie; Ahmad S. Teebi

Hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome [also known as Woodhouse–Sakati syndrome (WSS)] is a rare autosomal recessive neuroendocrine and ectodermal disorder. The syndrome was first described by Woodhouse and Sakati in 1983, and 47 patients from 23 families have been reported so far. We report on an additional seven patients (four males and three females) from two highly consanguineous Arab families from Qatar, presenting with a milder phenotype of WSS. These patients show the spectrum of clinical features previously found in WSS, but lack evidence of diabetes mellitus and extrapyramidal symptoms. These two new families further illustrate the natural course and the interfamilial phenotypic variability of WSS that may lead to challenges in making the diagnosis. In addition, our study suggests that WSS may not be as infrequent in the Arab world as previously thought.


American Journal of Human Genetics | 2016

Mutations in SMG9, Encoding an Essential Component of Nonsense-Mediated Decay Machinery, Cause a Multiple Congenital Anomaly Syndrome in Humans and Mice

Ranad Shaheen; Shams Anazi; Tawfeg Ben-Omran; Mohammed Zain Seidahmed; L. Brianna Caddle; Kristina Palmer; Rehab Ali; Tarfa Alshidi; Samya Hagos; Leslie O. Goodwin; Mais Hashem; Salma M. Wakil; Mohamed Abouelhoda; Dilek Colak; Stephen A. Murray; Fowzan S. Alkuraya

Nonsense-mediated decay (NMD) is an important process that is best known for degrading transcripts that contain premature stop codons (PTCs) to mitigate their potentially harmful consequences, although its regulatory role encompasses other classes of transcripts as well. Despite the critical role of NMD at the cellular level, our knowledge about the consequences of deficiency of its components at the organismal level is largely limited to model organisms. In this study, we report two consanguineous families in which a similar pattern of congenital anomalies was found to be most likely caused by homozygous loss-of-function mutations in SMG9, encoding an essential component of the SURF complex that generates phospho-UPF1, the single most important step in NMD. By knocking out Smg9 in mice via CRISPR/Cas9, we were able to recapitulate the major features of the SMG9-related multiple congenital anomaly syndrome we observed in humans. Surprisingly, human cells devoid of SMG9 do not appear to have reduction of PTC-containing transcripts but do display global transcriptional dysregulation. We conclude that SMG9 is required for normal human and murine development, most likely through a transcriptional regulatory role, the precise nature of which remains to be determined.


BMC Medical Genetics | 2016

W44X mutation in the WWOX gene causes intractable seizures and developmental delay: a case report

Loai Elsaadany; Mahmoud F. Elsaid; Rehab Ali; Hussein Kamel; Tawfeg Ben-Omran

BackgroundWW domain containing oxidoreductase (WWOX) gene was cloned in 2000; alteration has been seen in many cancer cells. It acts as a tumor suppresser by blocking cell growth and causing apoptosis. WWOX protein showed different expression of mice brain and spinal cord, for which deletion causes seizure and early death.Case presentationClinical and molecular characteristics of a consanguineous family show a homozygous mutation of WWOX gene at specific bases, causing a debilitating syndrome characterized by growth retardation, intractable epilepsy, intellectual disability, and early death.Using Whole Exome Sequencing (WES), a novel homozygous mutation in the WWOX gene is identified in a consanguineous Arab family from Qatar with two daughters who presented with intractable seizure and developmental delay.ConclusionThe study presents the importance of human WWOX gene for brain development and the association between gene mutation and epileptic encephalopathy. It also highlights the power of WES particularly in clinically challenging cases.


World Journal of Pediatrics | 2017

Newborn screening for remethylation disorders and vitamin B12 deficiency-evaluation of new strategies in cohorts from Qatar and Germany.

Gwendolyn Gramer; Ghassan Abdoh; Tawfeg Ben-Omran; Noora Shahbeck; Rehab Ali; Laila Mahmoud; Junmin Fang-Hoffmann; Georg F. Hoffmann; Hilal Al Rifai; Jürgen G. Okun

BackgroundNewborn screening is a precondition for early diagnosis and successful treatment of remethylation disorders and classical homocystinuria (cystathionine-ß-synthase deficiency). Newborn screening for classical homocystinuria using total homocysteine measurement in dried blood spots has been very successfully performed for many years for newborns from Qatar.MethodsA new optimized newborn screening strategy for remethylation disorders and homocystinuria was developed and evaluated for newborns from Qatar using total homocysteine measurement as first-tier and methionine, methionine-phenylalanine-ratio and propionylcarnitine as second-tiers. Proposed cut-offs were also retrospectively evaluated in newborn screening samples of 12 patients with remethylation disorders and vitamin B12 deficiency from Qatar and Germany.ResultsOver a 12 months period, the proposed strategy led to a decrease in the recall rate in homocysteine screening for Qatar from 1.09% to 0.68%, while allowing for additional systematic inclusion of remethylation disorders and vitamin B12 deficiency into the screening panel for Qatar. In the evaluated period the applied strategy would have detected all patients with classical homocystinuria identified by the previous strategy and in addition 5 children with maternal nutritional vitamin B12 deficiency and one patient with an isolated remethylation disorder. Additional retrospective evaluation of newborn screening samples of 12 patients from Germany and Qatar with remethlyation disorders or vitamin B12 deficiency showed that all of these patients would have been detected by the cut-offs used in the proposed new strategy. In addition, an adapted strategy for Germany using methionine, methionine-phenylalanine-ratio and propionylcarnitine as first-tier, and homocysteine as a second-tier test was also positively evaluated retrospectively.ConclusionsThe proposed strategy for samples from Qatar allows inclusion of remethylation disorders and vitamin B12 deficiency in the screening panel, while lowering the recall rate. An adapted second-tier strategy is presented for screening in Germany and will be prospectively evaluated over the next years in a pilot project named “Newborn Screening 2020”.


Human Genetics | 2017

Expanding the genetic heterogeneity of intellectual disability

Shams Anazi; Sateesh Maddirevula; Vincenzo Salpietro; Yasmine T. Asi; Saud Alsahli; Amal Alhashem; Hanan E. Shamseldin; Fatema Alzahrani; Nisha Patel; Niema Ibrahim; Firdous Abdulwahab; Mais Hashem; Nadia Al-Hashmi; Fathiya Al Murshedi; Adila Al Kindy; Ahmad Alshaer; Ahmed Rumayyan; Saeed Al Tala; Wesam Kurdi; Abdulaziz Alsaman; Ali Alasmari; Selina Banu; Tipu Sultan; Mohammed M. Saleh; Hisham Alkuraya; Mustafa A. Salih; Hesham Aldhalaan; Tawfeg Ben-Omran; Fatima Al Musafri; Rehab Ali

Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 68 families (105 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease–gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD and PCDHGA10 as particularly compelling candidates in which we identified biallelic likely deleterious variants in two independent ID families each. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms.


American Journal of Medical Genetics Part A | 2010

Further delineation of the Van den Ende–Gupta syndrome

Rehab Ali; Mariam Almureikhi; Fatima Al-Musaifri; Venkatraman Bhat; Ahmad S. Teebi; Tawfeg Ben-Omran

Van Den Ende–Gupta syndrome (VDEGS) is an infrequently described disorder characterized by arachnodactyly, camptodactyly, blepharophimosis, malar hypoplasia, narrow nasal bridge, convex nasal ridge, and everted lower lip. Patients show normal growth and cognition. We report on three male and three female cases from four consanguineous families, of which three belong to the same highly inbred tribe from Qatar. The phenotype in the patients is remarkably homogeneous. VDEGS has been suggested both to follow an autosomal recessive and autosomal dominant pattern of inheritance, but our observations suggest an autosomal recessive pattern of inheritance, although genetic heterogeneity cannot be excluded.


Orphanet Journal of Rare Diseases | 2014

Mutations in zinc finger 407 [ZNF407] cause a unique autosomal recessive cognitive impairment syndrome

Marios Kambouris; Rachid Maroun; Tawfeg Ben-Omran; Yasser Al-Sarraj; Khaoula Errafii; Rehab Ali; Hala Boulos; Patrick A. Curmi; Hatem El-Shanti

BackgroundA consanguineous Arab family is affected by an apparently novel autosomal recessive disorder characterized by cognitive impairment, failure-to-thrive, hypotonia and dysmorphic features including bilateral ptosis and epicanthic folds, synophrys, midface hypoplasia, downturned mouth corners, thin upper vermillion border and prominent ears, bilateral 5th finger camptodactyly, bilateral short 4th metatarsal bones, and limited knee mobility bilaterally.MethodsThe family was studied by homozygosity mapping, candidate gene mutation screening and whole Exome Next Generation Sequencing of a single affected member to identify the offending gene and mutation. The mutated gene product was studied by structural bioinformatics methods.ResultsA damaging c.C5054G mutation affecting an evolutionary highly conserved amino acid p.S1685W was identified in the ZNF407 gene at 18q23. The Serine to Tryptophane mutation affects two of the three ZNF407 isoforms and is located in the last third of the protein, in a linker peptide adjoining two zinc-finger domains. Structural analyses of this mutation shows disruption of an H-bond that locks the relative spatial position of the two fingers, leading to a higher flexibility of the linker and thus to a decreased probability of binding to the target DNA sequence essentially eliminating the functionality of downstream domains and interfering with the expression of various genes under ZNF407 control during fetal brain development.ConclusionsZNF407 is a transcription factor with an essential role in brain development. When specific and limited in number homozygosity intervals exist that harbor the offending gene in consanguineous families, Whole Exome Sequencing of a single affected individual is an efficient approach to gene mapping and mutation identification.


Archive | 2018

A Middle Eastern Founder Mutation Expands the Genotypic and Phenotypic Spectrum of Mitochondrial MICU1 Deficiency: A Report of 13 Patients

Sara Musa; Wafaa Eyaid; Kimberli J. Kamer; Rehab Ali; Mariam Almureikhi; Noora Shahbeck; Fatma Al Mesaifri; Nawal Makhseed; Zakkiriah Mohamed; Wafaa Ali AlShehhi; Vamsi K. Mootha; Jane Juusola; Tawfeg Ben-Omran

MICU1 encodes a Ca2+ sensing, regulatory subunit of the mitochondrial uniporter, a selective calcium channel within the organelles inner membrane. Ca2+ entry into mitochondria helps to buffer cytosolic Ca2+ transients and also activates ATP production within the organelle. Mutations in MICU1 have previously been reported in 17 children from nine families with muscle weakness, fatigue, normal lactate, and persistently elevated creatine kinase, as well as variable features that include progressive extrapyramidal signs, learning disabilities, nystagmus, and cataracts. In this study, we report the clinical features of an additional 13 patients from consanguineous Middle Eastern families with recessive mutations in MICU1. Of these patients, 12/13 are homozygous for a novel founder mutation c.553C>T (p.Q185*) that is predicted to lead to a complete loss of function of MICU1, while one patient is compound heterozygous for this mutation and an intragenic duplication of exons 9 and 10. The founder mutation occurs with a minor allele frequency of 1:60,000 in the ExAC database, but in ~1:500 individual in the Middle East. All 13 of these patients presented with developmental delay, learning disability, muscle weakness and easy fatigability, and failure to thrive, as well as additional variable features we tabulate. Consistent with previous cases, all of these patients had persistently elevated serum creatine kinase with normal lactate levels, but they also exhibited elevated transaminase enzymes. Our work helps to better define the clinical sequelae of MICU1 deficiency. Furthermore, our work suggests that targeted analysis of the MICU1 founder mutation in Middle Eastern patients may be warranted.

Collaboration


Dive into the Rehab Ali's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noora Shahbeck

Hamad Medical Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ghassan Abdoh

Hamad Medical Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wafaa Eyaid

King Saud bin Abdulaziz University for Health Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge