Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianna Feretzaki is active.

Publication


Featured researches published by Marianna Feretzaki.


Annual Review of Genetics | 2007

Sex in Fungi

Min Ni; Marianna Feretzaki; Sheng Sun; Xuying Wang; Joseph Heitman

Sexual reproduction enables genetic exchange in eukaryotic organisms as diverse as fungi, animals, plants, and ciliates. Given its ubiquity, sex is thought to have evolved once, possibly concomitant with or shortly after the origin of eukaryotic organisms themselves. The basic principles of sex are conserved, including ploidy changes, the formation of gametes via meiosis, mate recognition, and cell-cell fusion leading to the production of a zygote. Although the basic tenants are shared, sex determination and sexual reproduction occur in myriad forms throughout nature, including outbreeding systems with more than two mating types or sexes, unisexual selfing, and even examples in which organisms switch mating type. As robust and diverse genetic models, fungi provide insights into the molecular nature of sex, sexual specification, and evolution to advance our understanding of sexual reproduction and its impact throughout the eukaryotic tree of life.


PLOS Biology | 2013

Unisexual and Heterosexual Meiotic Reproduction Generate Aneuploidy and Phenotypic Diversity De Novo in the Yeast Cryptococcus neoformans

Min-Jie Ni; Marianna Feretzaki; Wenjun Li; Anna Floyd-Averette; Piotr A. Mieczkowski; Fred S. Dietrich; Joseph Heitman

Unisexual and heterosexual reproduction in the pathogenic yeast Cryptococcus neoformans enables de novo phenotypic and genotypic plasticity with frequent aneuploidy and rapid adaptation.


PLOS Genetics | 2010

Transcription Factors Mat2 and Znf2 Operate Cellular Circuits Orchestrating Opposite- and Same-Sex Mating in Cryptococcus neoformans

Xiaorong Lin; Jennifer C. Jackson; Marianna Feretzaki; Chaoyang Xue; Joseph Heitman

Cryptococcus neoformans is a human fungal pathogen that undergoes a dimorphic transition from a unicellular yeast to multicellular hyphae during opposite sex (mating) and unisexual reproduction (same-sex mating). Opposite- and same-sex mating are induced by similar environmental conditions and involve many shared components, including the conserved pheromone sensing Cpk1 MAPK signal transduction cascade that governs the dimorphic switch in C. neoformans. However, the homeodomain cell identity proteins Sxi1α/Sxi2a encoded by the mating type locus that are essential for completion of sexual reproduction following cell–cell fusion during opposite-sex mating are dispensable for same-sex mating. Therefore, identification of downstream targets of the Cpk1 MAPK pathway holds the key to understanding molecular mechanisms governing the two distinct developmental fates. Thus far, homology-based approaches failed to identify downstream transcription factors which may therefore be species-specific. Here, we applied insertional mutagenesis via Agrobacterium-mediated transformation and transcription analysis using whole genome microarrays to identify factors involved in C. neoformans differentiation. Two transcription factors, Mat2 and Znf2, were identified as key regulators of hyphal growth during same- and opposite-sex mating. Mat2 is an HMG domain factor, and Znf2 is a zinc finger protein; neither is encoded by the mating type locus. Genetic, phenotypic, and transcriptional analyses of Mat2 and Znf2 provide evidence that Mat2 is a downstream transcription factor of the Cpk1 MAPK pathway whereas Znf2 functions as a more terminal hyphal morphogenesis determinant. Although the components of the MAPK pathway including Mat2 are not required for virulence in animal models, Znf2, as a hyphal morphology determinant, is a negative regulator of virulence. Further characterization of these elements and their target circuits will reveal genes controlling biological processes central to fungal development and virulence.


PLOS Genetics | 2013

Genetic Circuits that Govern Bisexual and Unisexual Reproduction in Cryptococcus neoformans

Marianna Feretzaki; Joseph Heitman

Cryptococcus neoformans is a human fungal pathogen with a defined sexual cycle. Nutrient-limiting conditions and pheromones induce a dimorphic transition from unicellular yeast to multicellular hyphae and the production of infectious spores. Sexual reproduction involves cells of either opposite (bisexual) or one (unisexual) mating type. Bisexual and unisexual reproduction are governed by shared components of the conserved pheromone-sensing Cpk1 MAPK signal transduction cascade and by Mat2, the major transcriptional regulator of the pathway. However, the downstream targets of the pathway are largely unknown, and homology-based approaches have failed to yield downstream transcriptional regulators or other targets. In this study, we applied insertional mutagenesis via Agrobacterium tumefaciens transkingdom DNA delivery to identify mutants with unisexual reproduction defects. In addition to elements known to be involved in sexual development (Crg1, Ste7, Mat2, and Znf2), three key regulators of sexual development were identified by our screen: Znf3, Spo11, and Ubc5. Spo11 and Ubc5 promote sporulation during both bisexual and unisexual reproduction. Genetic and phenotypic analyses provide further evidence implicating both genes in the regulation of meiosis. Phenotypic analysis of sexual development showed that Znf3 is required for hyphal development during unisexual reproduction and also plays a central role during bisexual reproduction. Znf3 promotes cell fusion and pheromone production through a pathway parallel to and independent of the pheromone signaling cascade. Surprisingly, Znf3 participates in transposon silencing during unisexual reproduction and may serve as a link between RNAi silencing and sexual development. Our studies illustrate the power of unbiased genetic screens to reveal both novel and conserved circuits that operate sexual reproduction.


Chromosome Research | 2013

RNAi function, diversity, and loss in the fungal kingdom

R. Blake Billmyre; Silvia Calo; Marianna Feretzaki; Xuying Wang; Joseph Heitman

RNAi is conserved and has been studied in a broad cross-section of the fungal kingdom, including Neurospora crassa, Schizosaccharomyces pombe, Cryptococcus neoformans, and Mucor circinelloides. And yet well known species, including the model yeast Saccharomyces cerevisiae and the plant pathogen Ustilago maydis, have lost RNAi, providing insights and opportunities to illuminate benefits conferred both by the presence of RNAi and its loss. Some of the earliest studies of RNAi were conducted in Neurospora, contemporaneously with the elucidation of RNAi in Caenorhabditis elegans. RNAi is a key epigenetic mechanism for maintaining genomic stability and integrity, as well as to defend against viruses, and given its ubiquity was likely present in the last eukaryotic common ancestor. In this review, we describe the diversity of RNAi mechanisms found in the fungi, highlighting recent work in Neurospora, S. pombe, and Cryptococcus. Finally, we consider frequent, independent losses of RNAi in diverse fungal lineages and both review and speculate on evolutionary forces that may drive the losses or result therefrom.


Eukaryotic Cell | 2013

Unisexual Reproduction Enhances Fungal Competitiveness by Promoting Habitat Exploration via Hyphal Growth and Sporulation

Sujal S. Phadke; Marianna Feretzaki; Joseph Heitman

ABSTRACT Unisexual reproduction is a novel homothallic sexual cycle recently discovered in both ascomycetous and basidiomycetous pathogenic fungi. It is a form of selfing that induces the yeast-to-hyphal dimorphic transition in isolates of the α mating type of the human fungal pathogen Cryptococcus neoformans. Unisexual reproduction may benefit the pathogen by facilitating sexual reproduction in the absence of the opposite a mating type and by generating infectious propagules called basidiospores. Here, we report an independent potential selective advantage of unisexual reproduction beyond genetic exchange and recombination. We competed a wild-type strain capable of undergoing unisexual reproduction with mutants defective in this developmental pathway and found that unisexual reproduction provides a considerable dispersal advantage through hyphal growth and sporulation. Our results show that unisexual reproduction may serve to facilitate access to both nutrients and potential mating partners and may provide a means to maintain the capacity for dimorphic transitions in the environment.


PLOS Pathogens | 2013

Unisexual Reproduction Drives Evolution of Eukaryotic Microbial Pathogens

Marianna Feretzaki; Joseph Heitman

Genetic exchange occurs via horizontal gene transfer in bacteria and archea or sexual reproduction in fungal and parasitic eukaryotic microbes. Sexual reproduction is universal, or nearly so, in eukaryotes. Until recently, most eukaryotic microbial pathogens were thought to be clonal and asexual due to the absence of a compatible partner or the lack of morphological or population genetic evidence for sexual reproduction [1]. However, many of these eukaryotic pathogens have been found recently to have extant cryptic sexual cycles (Figure 1). Sex enables microbial pathogens to reshuffle their genomes, increase genetic diversity, purge deleterious mutations, and produce infectious propagules.


PLOS Genetics | 2016

Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex.

Marianna Feretzaki; R. Blake Billmyre; Shelly Applen Clancey; Xuying Wang; Joseph Heitman

RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein) and Qip1 (a homolog of N. crassa Qip) were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor) and Fzc28 (a transcription factor) are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory.


Advances in Genetics | 2014

Chapter Five – Unisexual Reproduction

Kevin C. Roach; Marianna Feretzaki; Sheng Sun; Joseph Heitman

Sexual reproduction is ubiquitous throughout the eukaryotic kingdom, but the capacity of pathogenic fungi to undergo sexual reproduction has been a matter of intense debate. Pathogenic fungi maintained a complement of conserved meiotic genes but the populations appeared to be clonally derived. This debate was resolved first with the discovery of an extant sexual cycle and then unisexual reproduction. Unisexual reproduction is a distinct form of homothallism that dispenses with the requirement for an opposite mating type. Pathogenic and nonpathogenic fungi previously thought to be asexual are able to undergo robust unisexual reproduction. We review here recent advances in our understanding of the genetic and molecular basis of unisexual reproduction throughout fungi and the impact of unisex on the ecology and genomic evolution of fungal species.


PLOS ONE | 2014

Unisexual Reproduction of Cryptococcus gattii

Sujal S. Phadke; Marianna Feretzaki; Shelly Applen Clancey; Olaf Mueller; Joseph Heitman

Cryptococcus gattii is a basidiomycetous human fungal pathogen that typically causes infection in tropical and subtropical regions and is responsible for an ongoing outbreak in immunocompetent individuals on Vancouver Island and in the Pacific Northwest of the US. Pathogenesis of this species may be linked to its sexual cycle that generates infectious propagules called basidiospores. A marked predominance of only one mating type (α) in clinical and environmental isolates suggests that a-α opposite-sex reproduction may be infrequent or geographically restricted, raising the possibility of an alternative unisexual cycle involving cells of only α mating type, as discovered previously in the related pathogenic species Cryptococcus neoformans. Here we report observation of hallmark features of unisexual reproduction in a clinical isolate of C. gattii (isolate 97/433) and describe genetic and environmental factors conducive to this sexual cycle. Our results are consistent with population genetic evidence of recombination in the largely unisexual populations of C. gattii and provide a useful genetic model for understanding how novel modes of sexual reproduction may contribute to evolution and virulence in this species.

Collaboration


Dive into the Marianna Feretzaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Floyd L. Wormley

University of Texas at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge