Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianna Orlova is active.

Publication


Featured researches published by Marianna Orlova.


Nature Genetics | 2007

Stepwise replication identifies a low-producing lymphotoxin-alpha allele as a major risk factor for early-onset leprosy.

Alexandre Alcaïs; Andrea Alter; Guillemette Antoni; Marianna Orlova; Nguyen Van Thuc; Meenakshi Singh; Patrícia R. Vanderborght; Kiran Katoch; Marcelo Távora Mira; Vu Hong Thai; Ngyuen Thu Huong; Nguyen Ngoc Ba; Milton Ozório Moraes; N. K. Mehra; Erwin Schurr; Laurent Abel

Host genetics has an important role in leprosy, and variants in the shared promoter region of PARK2 and PACRG were the first major susceptibility factors identified by positional cloning. Here we report the linkage disequilibrium mapping of the second linkage peak of our previous genome-wide scan, located close to the HLA complex. In both a Vietnamese familial sample and an Indian case-control sample, the low-producing lymphotoxin-α (LTA)+80 A allele was significantly associated with an increase in leprosy risk (P = 0.007 and P = 0.01, respectively). Analysis of an additional case-control sample from Brazil and an additional familial sample from Vietnam showed that the LTA+80 effect was much stronger in young individuals. In the combined sample of 298 Vietnamese familial trios, the odds ratio of leprosy for LTA+80 AA/AC versus CC subjects was 2.11 (P = 0.000024), which increased to 5.63 (P = 0.0000004) in the subsample of 121 trios of affected individuals diagnosed before 16 years of age. In addition to identifying LTA as a major gene associated with early-onset leprosy, our study highlights the critical role of case- and population-specific factors in the dissection of susceptibility variants in complex diseases.


Journal of Experimental Medicine | 2006

An autosomal dominant major gene confers predisposition to pulmonary tuberculosis in adults

Jamila El Baghdadi; Marianna Orlova; Andrea Alter; Brigitte Ranque; Mohamed Chentoufi; Faouzia Lazrak; Moulay Idriss Archane; Jean-Laurent Casanova; Abdellah Benslimane; Erwin Schurr; Laurent Abel

The molecular basis of genetic predisposition to pulmonary tuberculosis in adults remains largely elusive. Few candidate genes have consistently been implicated in tuberculosis susceptibility, and no conclusive linkage was found in two previous genome-wide screens. We report here a genome-wide linkage study in a total sample of 96 Moroccan multiplex families, including 227 siblings with microbiologically and radiologically proven pulmonary tuberculosis. A genome-wide scan conducted in half the sample (48 families) identified five regions providing suggestive evidence (logarithm of the odds [LOD] score >1.17; P < 0.01) for linkage. These regions were then fine-mapped in the total sample of 96 families. A single region of chromosome 8q12-q13 was significantly linked to tuberculosis (LOD score = 3.49; P = 3 × 10−5), indicating the presence of a major tuberculosis susceptibility gene. Linkage was stronger (LOD score = 3.94; P = 10−5) in the subsample of 39 families in which one parent was also affected by tuberculosis, whereas it was much lower (LOD score = 0.79) in the 57 remaining families without affected parents, supporting a dominant mode of inheritance of the major susceptibility locus. These results provide direct molecular evidence that human pulmonary tuberculosis has a strong genetic basis, and indicate that the genetic component involves at least one major locus with a dominant susceptibility allele.


The Journal of Infectious Diseases | 2012

Crohn's Disease Susceptibility Genes are Associated With Leprosy in the Vietnamese Population

Audrey V. Grant; Andrea Alter; Nguyen Thu Huong; Marianna Orlova; Nguyen Van Thuc; Nguyen Ngoc Ba; Vu Hong Thai; Laurent Abel; Erwin Schurr; Alexandre Alcaïs

A genomewide association study in Chinese patients with leprosy detected association signals in 16 single-nucleotide polymorphisms (SNPs) belonging to 6 loci, of which 4 are related to the NOD2 signaling pathway and are Crohns disease susceptibility loci. Here, we studied these 16 SNPs as potential leprosy susceptibility factors in 474 Vietnamese leprosy simplex families. We replicated SNPs at HLA-DR-DQ, RIPK2, CCDC122-LACC1, and NOD2 as leprosy susceptibility factors in Vietnam. These results validated the striking overlap in the genetic control of Crohns disease and leprosy.


The Journal of Infectious Diseases | 2011

Human Leukocyte Antigen Class I Region Single-Nucleotide Polymorphisms are Associated with Leprosy Susceptibility in Vietnam and India

Andrea Alter; Nguyen Thu Huong; Meenakshi Singh; Marianna Orlova; Nguyen Van Thuc; Kiran Katoch; Xiaojiang Gao; Vu Hong Thai; Nguyen Ngoc Ba; Mary Carrington; Laurent Abel; N. K. Mehra; Alexandre Alcaïs; Erwin Schurr

Experimental evidence suggested the existence of unidentified leprosy susceptibility loci in the human leukocyte antigen (HLA) complex. To identify such genetic risk factors, a high-density association scan of a 1.9-mega-base (Mb) region in the HLA complex was performed. Among 682 single-nucleotide polymorphisms (SNPs), 59 were associated with leprosy (P <.01) in 198 Vietnamese single-case leprosy families. Genotyping of these SNPs in an independent sample of 292 Vietnamese single-case leprosy families replicated the association of 12 SNPs (P <.01). Multivariate analysis of these 12 SNPs showed that the association information could be captured by 2 intergenic HLA class I region SNPs (P = 9.4 × 10⁻⁹)-rs2394885 and rs2922997 (marginal multivariate P = 2.1 × 10⁻⁷ and P = .0016, respectively). SNP rs2394885 tagged the HLA-C*15:05 allele in the Vietnamese population. The identical associations were validated in a third sample of 364 patients with leprosy and 371 control subjects from North India. These results implicated class I alleles in leprosy pathogenesis.


PLOS Neglected Tropical Diseases | 2013

PARK2 mediates interleukin 6 and monocyte chemoattractant protein 1 production by human macrophages.

Louis de Léséleuc; Marianna Orlova; Aurélie Cobat; Manon Girard; Nguyen Thu Huong; Nguyen Ngoc Ba; Nguyen Van Thuc; Richard W. Truman; John S. Spencer; Linda B. Adams; Vu Hong Thai; Alexandre Alcaïs; Erwin Schurr

Leprosy is a persistent infectious disease caused by Mycobacterium leprae that still affects over 200,000 new patients annually. The host genetic background is an important risk factor for leprosy susceptibility and the PARK2 gene is a replicated leprosy susceptibility candidate gene. The protein product of PARK2, Parkin, is an E3 ubiquitin ligase that is involved in the development of various forms of Parkinsonism. The human macrophage is both a natural host cell of M. leprae as well as a primary mediator of natural immune defenses, in part by secreting important pro-inflammatory cytokines and chemokines. Here, we report that down-regulation of Parkin in THP-1 macrophages, human monocyte-derived macrophages and human Schwann cells resulted in a consistent and specific decrease in interleukin-6 (IL-6) and monocyte chemoattractant protein 1 (MCP-1/CCL2) production in response to mycobacteria or LPS. Interestingly, production of IL-6 at 6 hours by THP-1 cells stimulated with live M. leprae and M. bovis BCG was dependent on pretreatment with 1,25-dihydroxyvitamin D3 (VD). Parkin knockdown in VD-treated cells blocked IL-6 induction by mycobacteria. However, IκB-α phosphorylation and levels of IκB-ξ, a nuclear protein required for IL-6 expression, were not affected by Parkin silencing. Phosphorylation of MAPK ERK1/2 and p38 was unaffected by Parkin silencing while JNK activation was promoted but did not explain the altered cytokine production. In a final set of experiments we found that genetic risk factors of leprosy located in the PARK2 promoter region were significantly correlated with M. leprae sonicate triggered CCL2 and IL6 transcript levels in whole blood assays. These results associated genetically controlled changes in the production of MCP-1/CCL2 and IL-6 with known leprosy susceptibility factors.


PLOS Neglected Tropical Diseases | 2016

A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy

Vinicius M. Fava; Jérémy Manry; Aurélie Cobat; Marianna Orlova; Nguyen Van Thuc; Nguyen Ngoc Ba; Vu Hong Thai; Laurent Abel; Alexandre Alcaïs; Erwin Schurr

Background Depending on the epidemiological setting, a variable proportion of leprosy patients will suffer from excessive pro-inflammatory responses, termed type-1 reactions (T1R). The LRRK2 gene encodes a multi-functional protein that has been shown to modulate pro-inflammatory responses. Variants near the LRRK2 gene have been associated with leprosy in some but not in other studies. We hypothesized that LRRK2 was a T1R susceptibility gene and that inconsistent association results might reflect different proportions of patients with T1R in the different sample settings. Hence, we evaluated the association of LRRK2 variants with T1R susceptibility. Methodology An association scan of the LRRK2 locus was performed using 156 single-nucleotide polymorphisms (SNPs). Evidence of association was evaluated in two family-based samples: A set of T1R-affected and a second set of T1R-free families. Only SNPs significant for T1R-affected families with significant evidence of heterogeneity relative to T1R-free families were considered T1R-specific. An expression quantitative trait locus (eQTL) analysis was applied to evaluate the impact of T1R-specific SNPs on LRRK2 gene transcriptional levels. Principal Findings A total of 18 T1R-specific variants organized in four bins were detected. The core SNP capturing the T1R association was the LRRK2 missense variant M2397T (rs3761863) that affects LRRK2 protein turnover. Additionally, a bin of nine SNPs associated with T1R were eQTLs for LRRK2 in unstimulated whole blood cells but not after exposure to Mycobacterium leprae antigen. Significance The results support a preferential association of LRRK2 variants with T1R. LRRK2 involvement in T1R is likely due to a pathological pro-inflammatory loop modulated by LRRK2 availability. Interestingly, the M2397T variant was reported in association with Crohn’s disease with the same risk allele as in T1R suggesting common inflammatory mechanism in these two distinct diseases.


Memorias Do Instituto Oswaldo Cruz | 2012

Genetics of leprosy reactions: an overview

Vinicius Fava; Marianna Orlova; Aurélie Cobat; Alexandre Alcaïs; Marcelo Távora Mira; Erwin Schurr

Type-1 (T1R) and Type-2 (T2R) leprosy reactions (LR), which affect up to 50% of leprosy patients, are aggressive inflammatory episodes of sudden onset and highly variable incidence across populations. LR are often diagnosed concurrently with leprosy, but more frequently occur several months after treatment onset. It is not uncommon for leprosy patients to develop recurring reactional episodes; however, they rarely undergo both types of LR. Today, LR are the main cause of permanent disabilities associated with leprosy and represent a major challenge in the clinical management of leprosy patients. Although progress has been made in understanding the immunopathology of LR, the factors that cause a leprosy patient to suffer from LR are largely unknown. Given the impact that ethnic background has on the risk of developing LR, host genetic factors have long been suspected of contributing to LR. Indeed, polymorphisms in seven genes [Toll-like receptors (TLR)1, TLR2, nucleotide-binding oligomerisation domain containing 2, vitamin D receptor, natural resistance-associated macrophage protein 1, C4B and interleukin-6] have been found to be associated with one or more LR outcomes. The identification of host genetic markers with predictive value for LR would have a major impact on nerve damage control in leprosy. In this review, we present the recent advances achieved through genetic studies of LR.


PLOS Genetics | 2013

Gene Set Signature of Reversal Reaction Type I in Leprosy Patients

Marianna Orlova; Aurélie Cobat; Nguyen Thu Huong; Nguyen Ngoc Ba; Nguyen Van Thuc; John S. Spencer; Yohann Nédélec; Luis B. Barreiro; Vu Hong Thai; Laurent Abel; Alexandre Alcaïs; Erwin Schurr

Leprosy reversal reactions type 1 (T1R) are acute immune episodes that affect a subset of leprosy patients and remain a major cause of nerve damage. Little is known about the relative importance of innate versus environmental factors in the pathogenesis of T1R. In a retrospective design, we evaluated innate differences in response to Mycobacterium leprae between healthy individuals and former leprosy patients affected or free of T1R by analyzing the transcriptome response of whole blood to M. leprae sonicate. Validation of results was conducted in a subsequent prospective study. We observed the differential expression of 581 genes upon exposure of whole blood to M. leprae sonicate in the retrospective study. We defined a 44 T1R gene set signature of differentially regulated genes. The majority of the T1R set genes were represented by three functional groups: i) pro-inflammatory regulators; ii) arachidonic acid metabolism mediators; and iii) regulators of anti-inflammation. The validity of the T1R gene set signature was replicated in the prospective arm of the study. The T1R genetic signature encompasses genes encoding pro- and anti-inflammatory mediators of innate immunity. This suggests an innate defect in the regulation of the inflammatory response to M. leprae antigens. The identified T1R gene set represents a critical first step towards a genetic profile of leprosy patients who are at increased risk of T1R and concomitant nerve damage.


PLOS Pathogens | 2010

Strain-Specific Differences in the Genetic Control of Two Closely Related Mycobacteria

Tania Di Pietrantonio; Carmen Hernandez; Manon Girard; Annie Verville; Marianna Orlova; Adam Belley; Marcel A. Behr; J. Concepción Loredo-Osti; Erwin Schurr

The host response to mycobacterial infection depends on host and pathogen genetic factors. Recent studies in human populations suggest a strain specific genetic control of tuberculosis. To test for mycobacterial-strain specific genetic control of susceptibility to infection under highly controlled experimental conditions, we performed a comparative genetic analysis using the A/J- and C57BL/6J-derived recombinant congenic (RC) mouse panel infected with the Russia and Pasteur strains of Mycobacterium bovis Bacille Calmette Guérin (BCG). Bacillary counts in the lung and spleen at weeks 1 and 6 post infection were used as a measure of susceptibility. By performing genome-wide linkage analyses of loci that impact on tissue-specific bacillary burden, we were able to show the importance of correcting for strain background effects in the RC panel. When linkage analysis was adjusted on strain background, we detected a single locus on chromosome 11 that impacted on pulmonary counts of BCG Russia but not Pasteur. The same locus also controlled the splenic counts of BCG Russia but not Pasteur. By contrast, a locus on chromosome 1 which was indistinguishable from Nramp1 impacted on splenic bacillary counts of both BCG Russia and Pasteur. Additionally, dependent upon BCG strain, tissue and time post infection, we detected 9 distinct loci associated with bacillary counts. Hence, the ensemble of genetic loci impacting on BCG infection revealed a highly dynamic picture of genetic control that reflected both the course of infection and the infecting strain. This high degree of adaptation of host genetics to strain-specific pathogenesis is expected to provide a suitable framework for the selection of specific host-mycobacteria combinations during co-evolution of mycobacteria with humans.


The Journal of Infectious Diseases | 2014

Association Study of Genes Controlling IL-12-dependent IFN-γ Immunity: STAT4 Alleles Increase Risk of Pulmonary Tuberculosis in Morocco

Ayoub Sabri; Audrey V. Grant; Kristel Cosker; Safa El Azbaoui; A. Abid; I.A. Rhorfi; H. Souhi; Hicham Janah; Kebir Alaoui-Tahiri; Yasser Gharbaoui; Majid Benkirane; Marianna Orlova; Anne Boland; Caroline Deswarte; Mélanie Migaud; Jacinta Bustamante; Erwin Schurr; Stéphanie Boisson-Dupuis; Jean-Laurent Casanova; Laurent Abel; Jamila El Baghdadi

Background. Only a minority of individuals infected with Mycobacterium tuberculosis develop clinical tuberculosis. Genetic epidemiological evidence suggests that pulmonary tuberculosis has a strong human genetic component. Previous genetic findings in Mendelian predisposition to more severe mycobacterial infections, including by M. tuberculosis, underlined the importance of the interleukin 12 (IL-12)/interferon γ (IFN-γ) circuit in antimycobacterial immunity. Methods. We conducted an association study in Morocco between pulmonary tuberculosis and a panel of single-nucleotide polymorphisms (SNPs) covering 14 core IL-12/IFN-γ circuit genes. The analyses were performed in a discovery family-based sample followed by replication in a case-control population. Results. Out of 228 SNPs tested in the family-based sample, 6 STAT4 SNPs were associated with pulmonary tuberculosis (P = .0013–.01). We replicated the same direction of association for 1 cluster of 3 SNPs encompassing the promoter region of STAT4. In the combined sample, the association was stronger among younger subjects (pulmonary tuberculosis onset <25 years) with an odds ratio of developing pulmonary tuberculosis at rs897200 for GG vs AG/AA subjects of 1.47 (1.06–2.04). Previous functional experiments showed that the G allele of rs897200 was associated with lower STAT4 expression. Conclusions. Our present findings in a Moroccan population support an association of pulmonary tuberculosis with STAT4 promoter-region polymorphisms that may impact STAT4 expression.

Collaboration


Dive into the Marianna Orlova's collaboration.

Top Co-Authors

Avatar

Erwin Schurr

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Alexandre Alcaïs

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Vu Hong Thai

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aurélie Cobat

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jérémy Manry

McGill University Health Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge