Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianna Pap is active.

Publication


Featured researches published by Marianna Pap.


Journal of Cellular Biochemistry | 2006

The effects of a mutant p53 protein on the proliferation and differentiation of PC12 rat phaeochromocytoma cells

Zsolt Fábián; Mónika Vecsernyés; Marianna Pap; József Szeberényi

PC12 rat phaeochromocytoma cells show neuronal differentiation upon NGF treatment. NGF induces prolonged activation of the Ras/Raf/MEK/ERK pathway in which the 42/44 kDa mitogen‐activated protein kinases (MAPKs), ERK 1 and 2 are thought to be the key mediators of the differentiation signals. Activation of ERKs leads to the increased transcription of early response genes resulting in cell cycle arrest. Upon NGF treatment the p53 protein, the most commonly mutated tumor suppressor in human cancers, translocates to the nucleus and may play a role in the mediation of NGF‐induced cell cycle arrest and neuronal differentiation. Here we demonstrate that in PC12 cells expressing both wild‐type and V143A mutant p53 proteins (p143p53PC12 cells), p53‐mediated biological responses are critically influenced. p143p53PC12 cells are not able to cease their proliferation and begin their neuronal differentiation program upon NGF treatment. The presence of mutant p53 also reduces the DNA‐binding activity of endogenous p53 and disturbs the regulatory machinery of p53 including both the phosphorylation of ERK 1/2, p38 and SAPK/JNK MAP kinases and itself. J. Cell. Biochem. 99: 1431–1441, 2006.


Enzyme and Microbial Technology | 2011

A simple fluorescent labeling technique to study virus adsorption in Newcastle disease virus infected cells.

András Balogh; Marianna Pap; Lajos Markó; Ibolya Koloszár; Laszlo K. Csatary; József Szeberényi

The present study demonstrates that the fluorescent general membrane dyes PKH67 and PKH26 are suitable to label Newcastle disease virus, an enveloped virus belonging to the family of paramyxoviridae. Adsorption of the labeled virus particles was tracked, visualized and quantitated using confocal laser scanning microscopy. The specificity of PKH-labeling was determined by colocalization analysis of the PKH signal with NDV-specific immunolabeling, and by using mock-infected controls and infection with detergent-pretreated labeled virus particles. The infectivity of the NDV particles was not affected by the labeling procedure as indicated by the results of a cytotoxicity ATP assay, an apoptosis assay and detection of virus-specific RNA and protein by qPCR and Western blotting, respectively, in cells infected with PKH-labeled and unlabeled virus particles. This technique can be used as an inexpensive, sensitive and rapid alternative method in the analysis of adsorption and internalization of enveloped viruses by the infected cells.


Cellular and Molecular Neurobiology | 2008

Involvement of Proteolytic Activation of Protein Kinase R in the Apoptosis of PC12 Pheochromocytoma Cells

Marianna Pap; József Szeberényi

Protein kinase R (PKR) is a serine/threonine-specific protein kinase implicated in the control of cell growth, differentiation, interferon-induced antiviral response, and induction of apoptosis. It is activated by various stress signals and growth factors. Activated PKR phosphorylates the α subunit of eukaryotic initiation factor 2 (eIF2α), thereby inhibiting the initiation of translation. PKR also mediates the activation of several transcription factors (STAT1, p53, and NFκB) regulating both pro- and antiapoptotic mechanisms. In the present work, we studied the signaling pathways leading to PKR activation and apoptosis in PC12 rat pheochromocytoma cells, a model system of neuronal differentiation and cell death. We found that administration of various apoptosis inducing agents and conditions (serum starvation, anisomycin, LY294002, etoposide, and cisplatin) led to the proteolytic cleavage of PKR in PC12 cells. This cleavage was in strong correlation with the time kinetics of DNA fragmentation and morphological alterations characteristic of apoptosis. PKR was activated by the proteolytic cleavage: increased phosphorylation of eIF2α was found to run parallel with PKR cleavage. The activation of caspase-3 and caspase-9 was stimulated by all apoptosis inducing agents used in this study. The activation of caspase-3 preceded the cleavage of PKR after serum withdrawal, anisomycin and etoposide treatment, while coincided with it in cells treated with LY294002 or cisplatin. These observations suggest that early activation of caspase-3 is upstream of PKR proteolysis and that proteolytic activation of PKR may play a general role in the apoptosis of PC12 cells induced by various forms of cellular stress.


Neurochemical Research | 1998

Differential Ras-Dependence of Gene Induction by Nerve Growth Factor and Second Messenger Analogs in PC12 Cells

Marianna Pap; József Szeberényi

Induction of neurite formation by nerve growth factor (NGF) in PC12 pheochromocytoma cells can be efficiently inhibited by expressing a dominant negative mutant form of the small guanine nucleotide binding Ha-Ras protein in these cells. The block in NGF-induced neuritogenesis caused by inhibition of endogenous Ras proteins was found to be partially relieved by simultaneous stimulation of cAMP- or Ca++-dependent signaling pathways. Since expression of certain genes is believed to be involved in NGF-signaling leading to morphological differentiation, we decided to study the combined effects of NGF and second messenger analogs on gene expression in PC12 cell lines expressing different levels of the interfering Ras protein. We found NGF-second messenger combinations that induced normal c-fos, zif268 and nur77 early-response gene expression without neuritogenesis, and, conversely, cell lines in which certain combination treatments caused partial neuronal differentiation in the absence of substantial activation of these genes. Similarly, neurite outgrowth induced by combination treatments does not seem to require the activation of the late-response transin gene. Our results thus suggest a lack of strong correlation between NGF-stimulated early- and secondary-response gene induction and morphological differentiation.


Apoptosis | 2014

Overexpression of CREB protein protects from tunicamycin-induced apoptosis in various rat cell types

András Balogh; Mária Németh; Ibolya Koloszár; Lajos Markó; Lukasz Przybyl; Kazushi Jinno; Csilla Szigeti; Marija Heffer; Matthias Gebhardt; József Szeberényi; Dominik N. Müller; György Sétáló; Marianna Pap

Endoplasmic reticulum (ER) stress plays an essential role in unfolded protein response induced apoptosis contributing to several pathological conditions. Glycogen synthase kinase-3β (GSK-3β) plays a central role in several apoptotic signaling, including ER stress, as the active form of GSK-3β induces apoptosis. The phosphorylation of cAMP responsive element (CRE) binding protein (CREB) Ser-133 (S133) residue is the end-point of various signaling pathways, like growth factor signaling, while the Ser-129 (S129) residue is phosphorylated by GSK-3β. The significance of the ubiquitously expressed transcription factor CREB is demonstrated in prolonged, tunicamycin (TM)-induced ER stress in this study. In the experiments wild-type (wt) CREB, S129Ala, S133Ala or S129Ala–S133Ala mutant CREB expressing PC12 rat pheochromocytoma cell lines showed increased survival under TM-evoked prolonged ER stress compared to wtPC12 cells. After TM treatment ER stress was activated in all PC12 cell types. Lithium and SB-216763, the selective, well-known inhibitors of GSK-3β, decreased TM-induced apoptosis and promoted cell survival. The proapoptotic BH3-only Bcl-2 family member Bcl-2-interacting mediator of cell death (Bim) level was decreased in the different CREB overexpressing PC12 cells as a result of TM treatment. CREB overexpression also inhibited the sequestration of Bim protein from tubulin molecules, as it was demonstrated in wtPC12 cells. Transient expression of wtCREB diminished TM-induced apoptosis in wtPC12, Rat-1 and primary rat vascular smooth muscle cells. These findings demonstrate a novel role of CREB in different cell types as a potent protector against ER stress.


Journal of Molecular Neuroscience | 2016

Regulatory Alterations of Energy Homeostasis in Spontaneously Hypertensive Rats (SHR).

Nóra Füredi; Alexandra Mikó; Bianka Aubrecht; Balázs Gaszner; Diana Feller; Ildikó Rostás; Judit Tenk; Szilvia Soós; Márta Balaskó; András Balogh; Marianna Pap; Erika Pétervári

Spontaneously hypertensive rats (SHR) have high sympathetic tone and progressive hypertension. Chronic calorie-restriction prevents hypertension. Their food intake (FI) and body weight are lower than in normotensive (NT) controls, even on a high-fat diet, suggesting a dysregulation of energy homeostasis. We assumed enhanced activity of hypothalamic anorexigenic melanocortins and diminished tone of orexigenic neuropeptide Y (NPY) in the background. FI of male SHR and NT Wistar rats was recorded in a FeedScale system upon intracerebroventricular injection of NPY, melanocortin ligands alpha-melanocyte-stimulating hormone (alpha-MSH), and agouti-related peptide (AgRP) or during a 7-day intracerebroventricular infusion of melanocortin antagonist HS024. Alpha-MSH, NPY, and AgRP immunoreactivities were semi-quantified in the arcuate (ARC) and paraventricular (PVN) nuclei of the hypothalamus in NT vs. SHR. Proopiomelanocortin gene expression was also assessed by quantitative RT-PCR in the ARC. Melanocortin-induced anorexia was stronger, FI induced by NPY or HS024 was smaller and delayed in SHR. Cellular alpha-MSH-specific signal density was higher in the ARC of SHR as evaluated by immunofluerescence, which was supported by PCR data. In the PVN, no differences in alpha-MSH-, NPY-, or AgRP-immunosignal were observed. Our results suggest that a higher melanocortin production/responsiveness and lower NPY responsiveness may contribute to the body weight dysregulation of SHR.


Virus Research | 2014

Gene expression profiling in PC12 cells infected with an oncolytic Newcastle disease virus strain

András Balogh; Judit Bátor; Lajos Markó; Mária Németh; Marianna Pap; György Sétáló; Dominik N. Müller; Laszlo K. Csatary; József Szeberényi

Although the oncolytic potential of natural, non-engineered Newcastle disease virus (NDV) isolates are well-known, cellular mechanisms determining NDV sensitivity of tumor cells are poorly understood. The aim of the present study was to look for gene expression changes in PC12 pheochromocytoma cells infected with an attenuated NDV strain that may be related to NDV susceptibility. PC12 cells were infected with the NDV strain MTH-68/H for 12h at a titer corresponding to the IC₅₀ value. Total cytoplasmic RNA samples isolated from control and MTH-68/H-infected cells were analyzed using a rat specific Affymetrix exon chip. Genes with at least 2-fold increase or decrease in their expression were identified. MTH-68/H-induced gene expression changes of 9 genes were validated using quantitative reverse transcriptase PCR. A total of 729 genes were up- and 612 genes were down-regulated in PC12 cells infected with MTH-68/H. Using the DAVID functional annotation clustering tool, the up- and down-regulated genes can be categorized into 176 and 146 overlapping functional gene clusters, respectively. Gene expression changes affecting the most important signaling mechanisms (Toll-like receptor signaling, RIG-I-like receptor signaling, interferon signaling, interferon effector pathways, apoptosis pathways, endoplasmic reticulum stress pathways, cell cycle regulation) are analyzed and discussed in detail in this paper. NDV-induced gene expression changes described in this paper affect several regulatory mechanisms and dozens of putative key proteins that may determine the NDV susceptibility of various tumors. Further characterization of these proteins may identify susceptibility markers to predict the chances of virotherapeutic treatment of human tumors.


Neurochemistry International | 2013

The role of Src protein in the process formation of PC12 cells induced by the proteasome inhibitor MG-132.

Oktávia Tarjányi; Gergely Berta; Alexandra Harci; Eszter B. Bacsa; Borbála Stark; Marianna Pap; József Szeberényi; György Sétáló

The PC12 (rat pheochromocytoma) cell line is a popular model system to study neuronal differentiation. Upon prolonged nerve growth factor (NGF) exposure these tumor cells stop to divide, become polygonal, grow projections and start to look and behave like sympathetic neurons. Differentiation of PC12 cells can also be induced by peptidyl-aldehyde proteasome inhibitors, such as Z-Leu-Leu-Leu-al (also known as MG-132) or via infection of the cells with Rous sarcoma virus. The signal transduction pathways underlying process formation, however, are still not fully understood. The liganded NGF receptor initiates a protein kinase cascade a member of which is Extracellular Signal-Regulated Kinase (ERK). Active ERK1/2 enzymes phosphorylate various cytoplasmic proteins and can also be translocated into the nucleus, where they regulate gene expression by activating key transcription factors. Using immunological methods we detected phosphorylation of TrkA, prolongedactivation of Src, and ERK1/2 with nuclear translocation of the latter during MG-132-induced process formation of PC12 cells. Activated Src remained predominantly cytoplasmic. MG-132-induced sustained ERK1/2 activation, nuclear translocation and neuritogenesis required the intact function of Src since these phenomena were markedly reduced or failed upon chemical inhibition of Src tyrosine protein kinase activity.


Molecular and Cellular Biochemistry | 2017

Partial p53-dependence of anisomycin-induced apoptosis in PC12 cells

Renáta Schipp; Judit Varga; Judit Bátor; Mónika Vecsernyés; Zita Árvai; Marianna Pap; József Szeberényi

The bacterial antibiotic anisomycin is known to induce apoptosis by activating several mitogen-activated protein kinases and by inhibiting protein synthesis. In this study, the influence of p53 protein on the apoptosis-inducing effect of anisomycin was investigated. The effect of protein synthesis-inhibiting concentration of anisomycin on apoptotic events was analyzed using Western blot, DNA fragmentation, and cell viability assays in wild-type PC12 and in mutant p53 protein expressing p143p53PC12 cells. Anisomycin stimulated the main apoptotic pathways in both cell lines, but p143p53PC12 cells showed lower sensitivity to the drug than their wild-type counterparts. Anisomycin caused the activation of the main stress kinases, phosphorylation of the p53 protein and the eukaryotic initiation factor eIF2α, proteolytic cleavage of protein kinase R, Bid, caspase-9 and -3. Furthermore, anisomycin treatment led to the activation of TRAIL and caspase-8, two proteins involved in the extrinsic apoptotic pathway. All these changes were stronger and more sustained in wtPC12 cells. In the presence of the dominant inhibitory p53 protein, p53- dependent genes involved in the regulation of apoptosis may be less transcribed and this can lead to the decrease of apoptotic processes in p143p53PC12 cells.


Brain Research | 2013

Partial rescue of geldanamycin-induced TrkA depletion by a proteasome inhibitor in PC12 cells

Gergely Berta; Alexandra Harci; Oktávia Tarjányi; Mónika Vecsernyés; András Balogh; Marianna Pap; József Szeberényi; György Sétáló

In this work we tried to identify mechanisms that could explain how chemical inhibition of heat-shock protein 90 reduces nerve growth factor signaling in rat pheochromocytoma PC12 cells. Geldanamycin is an antibiotic originally discovered based on its ability to bind heat-shock protein 90. This interaction can lead to the disruption of heat-shock protein 90-containing multimolecular complexes. It can also induce the inhibition or even degradation of partner proteins dissociated from the 90 kDa chaperone and, eventually, can cause apoptosis, for instance, in PC12 cells. Before the onset of initial apoptotic events, however, a marked decrease in the activity of extracellular signal-regulated kinases ERK 1/2 and protein kinase B/Akt can be observed together with reduced expression of the high affinity nerve growth factor receptor, tropomyosine-related kinase, TrkA, in this cell type. The proteasome inhibitor MG-132 can effectively counteract the geldanamycin-induced reduction of TrkA expression and it can render TrkA and ERK1/2 phosphorylation but not that of protein kinase B/Akt by nerve growth factor again inducible. We have found altered intracellular distribution of TrkA in geldanamycin-treated and proteasome-inhibited PC12 cells that may, at least from the viewpoint of protein localization explain why nerve growth factor remains without effect on protein kinase B/Akt. The lack of protein kinase B/Akt stimulation by nerve growth factor in turn reveals why nerve growth factor treatment cannot save PC12 cells from geldanamycin-induced programmed cell death. Our observations can help to better understand the mechanism of action of geldanamycin, a compound with strong human therapeutical potential.

Collaboration


Dive into the Marianna Pap's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lajos Markó

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge