Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianna Ranieri is active.

Publication


Featured researches published by Marianna Ranieri.


PLOS ONE | 2012

Calcium-Sensing Receptor and Aquaporin 2 Interplay in Hypercalciuria-Associated Renal Concentrating Defect in Humans. An In Vivo and In Vitro Study

Giuseppe Procino; Lisa Mastrofrancesco; Grazia Tamma; Domenica Lasorsa; Marianna Ranieri; Gilda Stringini; Francesco Emma; Maria Svelto; Giovanna Valenti

One mechanism proposed for reducing the risk of calcium renal stones is activation of the calcium-sensing receptor (CaR) on the apical membranes of collecting duct principal cells by high luminal calcium. This would reduce the abundance of aquaporin-2 (AQP2) and in turn the rate of water reabsorption. While evidence in cells and in hypercalciuric animal models supports this hypothesis, the relevance of the interplay between the CaR and AQP2 in humans is not clear. This paper reports for the first time a detailed correlation between urinary AQP2 excretion under acute vasopressin action (DDAVP treatment) in hypercalciuric subjects and in parallel analyzes AQP2-CaR crosstalk in a mouse collecting duct cell line (MCD4) expressing endogenous and functional CaR. In normocalciurics, DDAVP administration resulted in a significant increase in AQP2 excretion paralleled by an increase in urinary osmolality indicating a physiological response to DDAVP. In contrast, in hypercalciurics, baseline AQP2 excretion was high and did not significantly increase after DDAVP. Moreover DDAVP treatment was accompanied by a less pronounced increase in urinary osmolality. These data indicate reduced urinary concentrating ability in response to vasopressin in hypercalciurics. Consistent with these results, biotinylation experiments in MCD4 cells revealed that membrane AQP2 expression in unstimulated cells exposed to CaR agonists was higher than in control cells and did not increase significantly in response to short term exposure to forskolin (FK). Interestingly, we found that CaR activation by specific agonists reduced the increase in cAMP and prevented any reduction in Rho activity in response to FK, two crucial pathways for AQP2 translocation. These data support the hypothesis that CaR–AQP2 interplay represents an internal renal defense to mitigate the effects of hypercalciuria on the risk of calcium precipitation during antidiuresis. This mechanism and possibly reduced medulla tonicity may explain the lower concentrating ability observed in hypercalciuric patients.


Cellular Physiology and Biochemistry | 2011

Integrin signaling modulates AQP2 trafficking via Arg-Gly-Asp (RGD) motif.

Grazia Tamma; Domenica Lasorsa; Marianna Ranieri; Lisa Mastrofrancesco; Giovanna Valenti; Maria Svelto

Aquaporin-2 (AQP2) increases the water permeability of renal collecting ducts in response to vasopressin. Vasopressin stimulation is accompanied by a profound remodeling of actin cytoskeleton whose dynamics are regulated by crosstalk between intracellular and extracellular signals. Here, we report that AQP2 contains a conserved RGD domain in its external C-loop. Co-immunoprecipitation experiments demonstrated that AQP2 binds integrin β1 in renal tissue and in MCD4 cells. To investigate the role of this interaction on AQP2 trafficking, cells were exposed to synthetic RGD-containing peptides, GRGDNP or GRGDSP, able to bind certain integrins. Incubation with these peptides increased the membrane expression of AQP2 in the absence of hormonal stimulation as assessed by confocal analysis and cell surface biotinylation. To identify the signals underlying the effects of peptides on AQP2 trafficking, some possible intracellular messengers were evaluated. Exposure of MCD4 cells to GRGDNP increased intracellular cAMP as assessed by FRET studies while GRGDSP increased intracellular calcium concentration. Taken together, these data propose integrins as new players controlling the cellular localization of AQP2, via two distinct signal transduction pathways dependent on cAMP and calcium respectively.


PLOS ONE | 2013

Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR) are associated with increased ER to cytosol calcium gradient.

Marianna Ranieri; Grazia Tamma; Annarita Di Mise; Giuseppe Vezzoli; Laura Soldati; Maria Svelto; Giovanna Valenti

In humans, gain-of-function mutations of the calcium-sensing receptor (CASR) gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA) and reducing expression of Plasma Membrane Calcium-ATPase (PMCA). Wild-type CaSR (hCaSR-wt) and its gain-of-function (hCaSR-R990G; hCaSR-N124K) variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate) receptor inputs to cell function.


Journal of Biological Chemistry | 2014

Glutathionylation of the Aquaporin-2 Water Channel: A NOVEL POST-TRANSLATIONAL MODIFICATION MODULATED BY THE OXIDATIVE STRESS*

Grazia Tamma; Marianna Ranieri; Annarita Di Mise; Mariangela Centrone; Maria Svelto; Giovanna Valenti

Background: The trafficking of the vasopressin-dependent water channel AQP2 is regulated by post-translational modifications as phosphorylations and ubiquitylation. Results: AQP2 is subjected to S-glutathionylation, which is modulated by ROS production. Conclusion: AQP2 is sensitive to oxidative stress. Significance: Identifying this novel post-translational modification is crucial to understand renal diseases characterized by oxidative stress and AQP2-dependent water balance disturbance. Aquaporin-2 (AQP2) is the vasopressin-regulated water channel that controls renal water reabsorption and urine concentration. AQP2 undergoes different regulated post-translational modifications, including phosphorylation and ubiquitylation, which are fundamental for controlling AQP2 cellular localization, stability, and function. The relationship between AQP2 and S-glutathionylation is of potential interest because reactive oxygen species (ROS), produced under renal failure or nephrotoxic drugs, may influence renal function as well as the expression and the activity of different transporters and channels, including aquaporins. Here, we show for the first time that AQP2 is subjected to S-glutathionylation in kidney and in HEK-293 cells stably expressing AQP2. S-Glutathionylation is a redox-dependent post-translational modification controlling several signal transduction pathways and displaying an acute effect on free cytosolic calcium concentration. Interestingly, we found that in fresh kidney slices, the increased AQP2 S-glutathionylation correlated with tert-butyl hydroperoxide-induced ROS generation. Moreover, we also found that cells expressing wild-type human calcium-sensing receptor (hCaSR-wt) and its gain of function (hCaSR-R990G; hCaSR-N124K) had a significant decrease in AQP2 S-glutathionylation secondary to reduced ROS levels and reduced basal intracellular calcium concentration compared with mock cells. Together, these new findings provide fundamental insight into cell biological aspects of AQP2 function and may be relevant to better understand and explain pathological states characterized by an oxidative stress and AQP2-dependent water reabsorption disturbs.


Journal of The American Society of Nephrology | 2014

A Protein Kinase A–Independent Pathway Controlling Aquaporin 2 Trafficking as a Possible Cause for the Syndrome of Inappropriate Antidiuresis Associated with Polycystic Kidney Disease 1 Haploinsufficiency

Grazia Tamma; Domenica Lasorsa; Christiane Trimpert; Marianna Ranieri; A. Di Mise; Maria Grazia Mola; Lisa Mastrofrancesco; Olivier Devuyst; Maria Svelto; Peter M. T. Deen; Giovanna Valenti

Renal water reabsorption is controlled by arginine vasopressin (AVP), which binds to V2 receptors, resulting in protein kinase A (PKA) activation, phosphorylation of aquaporin 2 (AQP2) at serine 256, and translocation of AQP2 to the plasma membrane. However, AVP also causes dephosphorylation of AQP2 at S261. Recent studies showed that cyclin-dependent kinases (cdks) can phosphorylate AQP2 peptides at S261 in vitro. We investigated the possible role of cdks in the phosphorylation of AQP2 and identified a new PKA-independent pathway regulating AQP2 trafficking. In ex vivo kidney slices and MDCK-AQP2 cells, R-roscovitine, a specific inhibitor of cdks, increased pS256 levels and decreased pS261 levels. The changes in AQP2 phosphorylation status were paralleled by increases in cell surface expression of AQP2 and osmotic water permeability in the absence of forskolin stimulation. R-Roscovitine did not alter cAMP-dependent PKA activity but specifically reduced protein phosphatase 2A (PP2A) expression and activity in MDCK cells. Notably, we found reduced PP2A expression and activity and reduced pS261 levels in Pkd1(+/-) mice displaying a syndrome of inappropriate antidiuresis with high levels of pS256, despite unchanged AVP and cAMP. Similar to previous findings in Pkd1(+/-) mice, R-roscovitine treatment caused a significant decrease in intracellular calcium in MDCK cells. Our data indicate that reduced activity of PP2A, secondary to reduced intracellular Ca(2+) levels, promotes AQP2 trafficking independent of the AVP-PKA axis. This pathway may be relevant for explaining pathologic states characterized by inappropriate AVP secretion and positive water balance.


Cellular Physiology and Biochemistry | 2013

Co-Regulated Pendrin and Aquaporin 5 Expression and Trafficking in Type-B Intercalated Cells under Potassium Depletion

Giuseppe Procino; Serena Milano; Grazia Tamma; Silvia Dossena; Claudia Barbieri; Maria Celeste Nicoletti; Marianna Ranieri; Annarita Di Mise; Charity Nofziger; Maria Svelto; Markus Paulmichl; Giovanna Valenti

Background: We recently reported that aquaporin 5 (AQP5), a water channel never identified in the kidney before, co-localizes with pendrin at the apical membrane of type-B intercalated cells in the kidney cortex. Since co-expression of AQP5 and pendrin in the apical membrane domain is a common feature of several other epithelia such as cochlear and bronchial epithelial cells, we evaluated here whether this strict membrane association may reflect a co-regulation of the two proteins. To investigate this possibility, we analyzed AQP5 and pendrin expression and trafficking in mice under chronic K+ depletion, a condition that results in an increased ability of renal tubule to reabsorb bicarbonate, often leads to metabolic alkalosis and is known to strongly reduce pendrin expression. Methods: Mice were housed in metabolic cages and pair-fed with either a standard laboratory chow or a K+-deficient diet. AQP5 abundance was assessed by western blot in whole kidney homogenates and AQP5 and pendrin were localized by confocal microscopy in kidney sections from those mice. In addition, the short-term effect of changes in external pH on pendrin trafficking was evaluated by fluorescence resonance energy transfer (FRET) in MDCK cells, and the functional activity of pendrin was tested in the presence and absence of AQP5 in HEK 293 Phoenix cells. Results: Chronic K+ depletion caused a strong reduction in pendrin and AQP5 expression. Moreover, both proteins shifted from the apical cell membrane to an intracellular compartment. An acute pH shift from 7.4 to 7.0 caused pendrin internalization from the plasma membrane. Conversely, a pH shift from 7.4 to 7.8 caused a significant increase in the cell surface expression of pendrin. Finally, pendrin ion transport activity was not affected by co-expression with AQP5. Conclusions: The co-regulation of pendrin and AQP5 membrane expression under chronic K+-deficiency indicates that these two molecules could cooperate as an osmosensor to rapidly detect and respond to alterations in luminal fluid osmolality.


American Journal of Physiology-renal Physiology | 2015

Conditionally immortalized human proximal tubular epithelial cells isolated from the urine of a healthy subject express functional calcium-sensing receptor

Annarita Di Mise; Grazia Tamma; Marianna Ranieri; Maria Svelto; Bert van den Heuvel; Elena Levtchenko; Giovanna Valenti

The calcium-sensing receptor (CaSR) is a G protein-coupled receptor, which plays an essential role in regulating Ca(2+) homeostasis. Here we show that conditionally immortalized proximal tubular epithelial cell line (ciPTEC) obtained by immortalizing and subcloning cells exfoliated in the urine of a healthy subject expresses functional endogenous CaSR. Immunolocalization studies of polarized ciPTEC revealed the apical localization of the receptor. By Western blotting of ciPTEC lysates, both monomeric and dimeric forms of CaSR at 130 and ∼250 kDa, respectively, were detected. Functional studies indicated that both external calcium and the positive CaSR allosteric modulator, NPS-R568, induced a significant increase in cytosolic calcium, proving a high sensitivity of the endogenous receptor to its agonists. Calcium depletion from the endoplasmic reticulum using cyclopiazonic acid abolished the increase in cytosolic calcium elicited by NPS-R568, confirming calcium exit from intracellular stores. Activation of CaSR by NPS-R significantly reduced the increase in cAMP elicited by forskolin (FK), a direct activator of adenylate cyclase, further confirming the functional expression of the receptor in this cell line. CaSR expressed in ciPTEC was found to interact with Gq as a downstream effector, which in turn can cause release of calcium from intracellular stores via phospholipase C activation. We conclude that human proximal tubular ciPTEC express functional CaSR and respond to its activation with a release of calcium from intracellular stores. These cell lines represent a valuable tool for research into the disorder associated with gain or loss of function of the CaSR by producing cell lines from patients.


Cellular Physiology and Biochemistry | 2010

Differential modulation of intracellular Ca2+ responses associated with calcium-sensing receptor activation in renal collecting duct cells.

Giovanna Valenti; Annalisa Mira; Lisa Mastrofrancesco; Domenica Lasorsa; Marianna Ranieri; Maria Svelto

In this work, we studied G protein-coupled Extracellular Calcium Sensing Receptor (CaR) signaling in mouse cortical collecting duct cells (MCD4) expressing endogenous CaR. Intracellular [Ca<sup>2+</sup>] measurements performed with real time video imaging revealed that CaR stimulation with 5mM Ca<sup>2+</sup>, 300µM Gd<sup>3+</sup> and with 10µM of specific allosteric modulator NPS-R 568, all resulted in an increase in [Ca<sup>2+</sup>]<sub>i</sub> although displaying different features. Specifically, Ca<sup>2+</sup> as well as stimulation with NPS-R 568 induced a rapid peak of [Ca<sup>2+</sup>]<sub>i</sub> while stimulation with Gd<sup>3+</sup> induced transient intracellular Ca<sup>2+</sup> oscillations. PLC inhibition completely abolished any [Ca<sup>2+</sup>]<sub>i</sub> increase after stimulation with CaR agonists. Inhibition of Rho or Rho kinase (ROK) abolished [Ca<sup>2+</sup>]<sub>i</sub> oscillations induced by Gd<sup>3+</sup>, while the peak induced by high Ca<sup>2+</sup> was similar to control. Conversely, emptying the intracellular calcium stores abolished the response to Gd<sup>3+</sup>. On the other hand, the inhibition of calcium influx did not alter calcium changes. We conclude that in our cell model, CaR stimulation with distinct agonists activates two distinct transduction pathways, both PLC-dependent. The transient cytosolic Ca<sup>2+</sup> oscillations produced by Gd<sup>3+</sup> are modulated by Rho-Rho kinase signaling, whereas the rapid peak of intracellular Ca<sup>2+</sup> in response to 5mM [Ca<sup>2+</sup>]<sub>o</sub> is mainly due to PLC/IP3 pathway activation.


Journal of Cell Science | 2015

Negative feedback from CaSR signaling to aquaporin-2 sensitizes vasopressin to extracellular Ca2.

Marianna Ranieri; Grazia Tamma; Di Mise A; Annamaria Russo; Mariangela Centrone; Maria Svelto; Giuseppe Calamita; Giovanna Valenti

ABSTRACT We previously described that high luminal Ca2+ in the renal collecting duct attenuates short-term vasopressin-induced aquaporin-2 (AQP2) trafficking through activation of the Ca2+-sensing receptor (CaSR). Here, we evaluated AQP2 phosphorylation and permeability, in both renal HEK-293 cells and in the dissected inner medullary collecting duct, in response to specific activation of CaSR with NPS-R568. In CaSR-transfected cells, CaSR activation drastically reduced the basal levels of AQP2 phosphorylation at S256 (AQP2-pS256), thus having an opposite effect to vasopressin action. When forskolin stimulation was performed in the presence of NPS-R568, the increase in AQP2-pS256 and in the osmotic water permeability were prevented. In the freshly isolated inner mouse medullar collecting duct, stimulation with forskolin in the presence of NPS-R568 prevented the increase in AQP2-pS256 and osmotic water permeability. Our data demonstrate that the activation of CaSR in the collecting duct prevents the cAMP-dependent increase in AQP2-pS256 and water permeability, counteracting the short-term vasopressin response. By extension, our results suggest the attractive concept that CaSR expressed in distinct nephron segments exerts a negative feedback on hormones acting through cAMP, conferring high sensitivity of hormone to extracellular Ca2+. Highlighted Article: In the kidney collecting duct, CaSR signaling activated by luminal Ca2+ antagonizes vasopressin action, thus reducing AQP2-mediated water reabsorption and reducing the risk of Ca2+ saturation.


Gastroenterology | 2009

Ca2+-dependent K+ efflux regulates deoxycholate-induced apoptosis of BHK-21 and Caco-2 cells.

Andrea Gerbino; Marianna Ranieri; Stefania Lupo; Rosa Caroppo; Lucantonio Debellis; Isabella Maiellaro; Mariano F. Caratozzolo; Francesco Lopez; Matilde Colella

BACKGROUND & AIMS Deoxycholate (DC) has proapoptotic and tumorigenic effects in different cell types of the gastrointestinal tract. Exposure of BHK-21 (stromal) cells to DC induces Ca(2+) entry at the plasma membrane, which affects intracellular Ca(2+) signaling. We assessed whether DC-induced increases in [Ca(2+)] can impinge on plasma membrane properties (eg, ionic conductances) involved in cell apoptosis. METHODS Single- and double-barreled microelectrodes were used to measure membrane potential (V(m)) and extracellular [K(+)] in BHK-21 fibroblasts and Caco-2 colon carcinoma cells. Apoptosis was assessed by Hoechst labeling, propidium iodide staining, and caspase-3 and caspase-7 assays. RESULTS DC-induced cell membrane hyperpolarization was directly measured with intracellular microelectrodes in both cell lines. Diverse Ca(2+) mobilizing agents, such as membrane receptor agonists, an inhibitor of the sarco/endoplasmic reticulum Ca(2+) adenosine triphosphatase and a Ca(2+) ionophore, also induced increases in V(m). Removal of extracellular Ca(2+) reduced the agonist- and DC-induced membrane hyperpolarization by approximately 15% and 60%, respectively. These findings indicate a prominent role for Ca(2+) entry at the plasma membrane in the action of this bile salt. Blockade of Ca(2+)-activated K(+) conductances by charybdotoxin and apamin reduced DC-induced hyperpolarization by 75% and 64% in BHK-21 and Caco-2 cells, respectively. These inhibitors also reduced the DC-induced increase in extracellular [K(+)] by 75% and cell apoptosis by approximately 50% in both cell lines. CONCLUSIONS Ca(2+)-dependent K(+) conductance is an important regulator of DC-induced apoptosis in stromal and colon cancer cells.

Collaboration


Dive into the Marianna Ranieri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Vezzoli

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge