Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grazia Tamma is active.

Publication


Featured researches published by Grazia Tamma.


Journal of Biological Chemistry | 2001

An Inhibitory Role of Rho in the Vasopressin-mediated Translocation of Aquaporin-2 into Cell Membranes of Renal Principal Cells

Enno Klussmann; Grazia Tamma; Dorothea Lorenz; Burkhard Wiesner; Kenan Maric; Fred Hofmann; Klaus Aktories; Giovanna Valenti; Walter Rosenthal

Vasopressin regulates water reabsorption in renal collecting duct principal cells by a cAMP-dependent translocation of the water channel aquaporin-2 (AQP2) from intracellular vesicles into the cell membrane. In the present work primary cultured inner medullary collecting duct cells were used to study the role of the proteins of the Rho family in the translocation of AQP2. Clostridium difficile toxin B, which inhibits all members of the Rho family, Clostridium limosum C3 toxin, which inactivates only Rho, and the Rho kinase inhibitor, Y-27632, induced both depolymerization of actin stress fibers and AQP2 translocation in the absence of vasopressin. The data suggest an inhibitory role of Rho in this process, whereby constitutive membrane localization is prevented in resting cells. Expression of constitutively active RhoA induced formation of actin stress fibers and abolished AQP2 translocation in response to elevation of intracellular cAMP, confirming the inhibitory role of Rho. Cytochalasin D induced both depolymerization of the F-actin cytoskeleton and AQP2 translocation, indicating that depolymerization of F-actin is sufficient to induce AQP2 translocation. Thus Rho is likely to control the intracellular localization of AQP2 via regulation of the F-actin cytoskeleton.


Journal of Cell Science | 2003

cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI

Grazia Tamma; Enno Klussmann; Giuseppe Procino; Maria Svelto; Walter Rosenthal; Giovanna Valenti

We have recently demonstrated that inhibition of Rho GTPase with Clostridium difficile toxin B, or with Clostridium botulinum C3 toxin, causes actin depolymerization and translocation of aquaporin 2 (AQP2) in renal CD8 cells in the absence of hormonal stimulation. Here we demonstrate that Rho inhibition is part of the signal transduction cascade activated by vasopressin leading to AQP2 insertion into the apical membrane. Quantitation of active RhoA (GTP-bound) by selective pull down experiments demonstrated that the amount of active RhoA decreased upon stimulation of CD8 cells with the cAMP-elevating agent forskolin. Consistent with this observation, forskolin treatment resulted in a decreased expression of membrane-associated (active) Rho, as assessed by cell fractionation followed by western blotting analysis. In addition, the abundance of the endogenous Rho GDP dissociation inhibitor (Rho-GDI) was found to have decreased in the membrane fraction after forskolin stimulation. Co-immunoprecipitation experiments revealed that, after forskolin stimulation, the amount of Rho-GDI complexed with RhoA increased, suggesting that Rho GTPase inhibition occurs through association of RhoA with Rho-GDI. Finally, forskolin stimulation was associated with an increase in Rho phosphorylation on a serine residue, a protein modification known to stabilize the inactive form of RhoA and to increase its interaction with Rho-GDI. Taken together, these data demonstrate that RhoA inhibition through Rho phosphorylation and interaction with Rho-GDI is a key event for cytoskeletal dynamics controlling cAMP-induced AQP2 translocation.


Journal of Biological Chemistry | 2004

Identification of a Novel A-kinase Anchoring Protein 18 Isoform and Evidence for Its Role in the Vasopressin-induced Aquaporin-2 Shuttle in Renal Principal Cells

Volker Henn; Bayram Edemir; Eduard Stefan; Burkhard Wiesner; Dorothea Lorenz; Franziska Theilig; Roland Schmitt; Lutz Vossebein; Grazia Tamma; Michael Beyermann; Eberhard Krause; Friedrich W. Herberg; Giovana Valenti; S. Bachmann; Walter Rosenthal; Enno Klussmann

Arginine vasopressin (AVP) increases the water permeability of renal collecting duct principal cells by inducing the fusion of vesicles containing the water channel aquaporin-2 (AQP2) with the plasma membrane (AQP2 shuttle). This event is initiated by activation of vasopressin V2 receptors, followed by an elevation of cAMP and the activation of protein kinase A (PKA). The tethering of PKA to subcellular compartments by protein kinase A anchoring proteins (AKAPs) is a prerequisite for the AQP2 shuttle. During the search for AKAP(s) involved in the shuttle, a new splice variant of AKAP18, AKAP18δ, was identified. AKAP18δ functions as an AKAP in vitro and in vivo. In the kidney, it is mainly expressed in principal cells of the inner medullary collecting duct, closely resembling the distribution of AQP2. It is present in both the soluble and particulate fractions derived from renal inner medullary tissue. Within the particulate fraction, AKAP18δ was identified on the same intracellular vesicles as AQP2 and PKA. AVP not only recruited AQP2, but also AKAP18δ to the plasma membrane. The elevation of cAMP caused the dissociation of AKAP18δ and PKA. The data suggest that AKAP18δ is involved in the AQP2 shuttle.


Handbook of experimental pharmacology | 2009

Regulation of Aquaporin-2 Trafficking

Pavel I. Nedvetsky; Grazia Tamma; Sven Beulshausen; Giovanna Valenti; Walter Rosenthal; Enno Klussmann

Principal cells lining renal collecting ducts control the fine-tuning of body water homeostasis by regulating water reabsorption through the water channels aquaporin-2 (AQP2), aquaporin-3 (AQP3), and aquaporin-4 (AQP4). While the localization of AQP2 is subject to regulation by arginine-vasopressin (AVP), AQP3 and AQP4 are constitutively expressed in the basolateral plasma membrane. AVP adjusts the amount of AQP2 in the plasma membrane by triggering its redistribution from intracellular vesicles into the plasma membrane. This permits water entry into the cells and water exit through AQP3 and AQP4. The translocation of AQP2 is initiated by an increase in cAMP following V2R activation through AVP. The AVP-induced rise in cAMP activates protein kinase A (PKA), which in turn phosphorylates AQP2, and thereby triggers the redistribution of AQP2. Several proteins participating in the control of cAMP-dependent AQP2 trafficking have been identified; for example, A kinase anchoring proteins (AKAPs) tethering PKA to cellular compartments; phosphodiesterases (PDEs) regulating the local cAMP level; cytoskeletal components such as F-actin and microtubules; small GTPases of the Rho family controlling cytoskeletal dynamics; motor proteins transporting AQP2-bearing vesicles to and from the plasma membrane for exocytic insertion and endocytic retrieval; SNAREs inducing membrane fusions, hsc70, a chaperone, important for endocytic retrieval. In addition, cAMP-independent mechanisms of translocation mainly involving the F-actin cytoskeleton have been uncovered. Defects of AQP2 trafficking cause diseases such as nephrogenic diabetes insipidus (NDI), a disorder characterized by a massive loss of hypoosmotic urine.This review summarizes recent data elucidating molecular mechanisms underlying the trafficking of AQP2. In particular, we focus on proteins involved in the regulation of trafficking, and physiological and pathophysiological stimuli determining the cellular localization of AQP2. The identification of proteins and protein-protein interactions may lead to the development of drugs targeting AQP2 trafficking. Such drugs may be suitable for the treatment of diseases associated with dysregulation of body water homeostasis, including NDI or cardiovascular diseases (e.g., chronic heart failure) where the AVP level is elevated, inducing excessive water retention.


Journal of Cell Science | 2003

The prostaglandin E2 analogue sulprostone antagonizes vasopressin-induced antidiuresis through activation of Rho

Grazia Tamma; Burkhard Wiesner; Jens Furkert; Daniel Hahm; Alexander Oksche; Michael Schaefer; Giovanna Valenti; Walter Rosenthal; Enno Klussmann

Arginine-vasopressin (AVP) facilitates water reabsorption in renal collecting duct principal cells by activation of vasopressin V2 receptors and the subsequent translocation of water channels (aquaporin-2, AQP2) from intracellular vesicles into the plasma membrane. Prostaglandin E2 (PGE2) antagonizes AVP-induced water reabsorption; the signaling pathway underlying the diuretic response is not known. Using primary rat inner medullary collecting duct (IMCD) cells, we show that stimulation of prostaglandin EP3 receptors induced Rho activation and actin polymerization in resting IMCD cells, but did not modify the intracellular localization of AQP2. However, AVP-, dibutyryl cAMP- and forskolin-induced AQP2 translocation was strongly inhibited. This inhibitory effect was independent of increases in cAMP and cytosolic Ca2+. In addition, stimulation of EP3 receptors inhibited the AVP-induced Rho inactivation and the AVP-induced F-actin depolymerization. The data suggest that the signaling pathway underlying the diuretic effects of PGE2 and probably those of other diuretic agents include cAMP- and Ca2+-independent Rho activation and F-actin formation.


American Journal of Physiology-cell Physiology | 2011

Regulation of AQP2 localization by S256 and S261 phosphorylation and ubiquitination

Grazia Tamma; Joris H. Robben; Christiane Trimpert; Michelle Boone; Peter M. T. Deen

Vasopressin-induced water reabsorption coincides with phosphorylation of aquaporin-2 (AQP2) at S256 (pS256), dephosphorylation at S261, and its translocation to the apical membrane, whereas treatment with the phorbol ester 12-tetradecanoylphorbol-13-acetate (TPA) induces AQP2 ubiquitination at K270, its internalization, and lysosomal degradation. In this study we investigated the relationship between S256 and S261 phosphorylation in AQP2 and its ubiquitination and trafficking in MDCK cells. Forskolin stimulation associated with increased pS256 and decreased pS261 AQP2, indicating that MDCK cells are a good model. After forskolin stimulation, TPA-induced ubiquitination of AQP2 preceded phosphorylation of AQP2 at S261, which in the first instance occurred predominantly on ubiquitinated AQP2. Forskolin-induced changes in pS261 were also observed for AQP2-S256A and AQP2-S256D, which constitutively localize in vesicles and the apical membrane, respectively. Although pS261 varies with forskolin as with wild-type AQP2, AQP2-S256A is not increased in its ubiquitination. Our data reveal that pS261 occurred independently of AQP2 localization and suggest that pS261 follows ubiquitination and endocytosis and may stabilize AQP2 ubiquitination and intracellular localization. The absence of increased ubiquitination of AQP2-S256A indicates that its intracellular location is due to the lack of pS256. Furthermore, AQP2-S261A and AQP2-S261D localized to vesicles, which was due to their increased ubiquitination, because changing K270 into Arg in both mutants resulted in their localization in the apical membrane. Although still increased in its ubiquitination, AQP2-S256D-S261D localized in the apical membrane. AQP2-S256D-K270R-Ub, however, localized to intracellular vesicles. Although our localization of AQP2-S261A/D is different from that of others, these data indicate that constitutive S256 phosphorylation counterbalances S261D-induced ubiquitination and internalization or changes its structure to allow distribution to the apical membrane. The vesicular localization of AQP2-S256D-K270R-Ub, however, indicates that the dominant apical sorting of S256D can again be overruled by constitutive ubiquitination. These data indicate that the membrane localization of AQP2 is determined by the balance of the extents of phosphorylation and ubiquitination.


Journal of The American Society of Nephrology | 2010

Reciprocal Regulation of Aquaporin-2 Abundance and Degradation by Protein Kinase A and p38-MAP Kinase

Pavel I. Nedvetsky; Vedrana Tabor; Grazia Tamma; Sven Beulshausen; Philipp Skroblin; Aline Kirschner; Kerim Mutig; Mareike Boltzen; Oscar Petrucci; Anna Vossenkämper; Burkhard Wiesner; S. Bachmann; Walter Rosenthal; Enno Klussmann

Arginine-vasopressin (AVP) modulates the water channel aquaporin-2 (AQP2) in the renal collecting duct to maintain homeostasis of body water. AVP binds to vasopressin V2 receptors (V2R), increasing cAMP, which promotes the redistribution of AQP2 from intracellular vesicles into the plasma membrane. cAMP also increases AQP2 transcription, but whether altered degradation also modulates AQP2 protein levels is not well understood. Here, elevation of cAMP increased AQP2 protein levels within 30 minutes in primary inner medullary collecting duct (IMCD) cells, in human embryonic kidney (HEK) 293 cells ectopically expressing AQP2, and in mouse kidneys. Accelerated transcription or translation did not explain this increase in AQP2 abundance. In IMCD cells, cAMP inhibited p38-mitogen-activated protein kinase (p38-MAPK) via activation of protein kinase A (PKA). Inhibition of p38-MAPK associated with decreased phosphorylation (serine 261) and polyubiquitination of AQP2, preventing proteasomal degradation. Our results demonstrate that AVP enhances AQP2 protein abundance by altering its proteasomal degradation through a PKA- and p38-MAPK-dependent pathway.


Journal of Cell Science | 2005

Actin remodeling requires ERM function to facilitate AQP2 apical targeting

Grazia Tamma; Enno Klussmann; Johannes Oehlke; Eberhard Krause; Walter Rosenthal; Maria Svelto; Giovanna Valenti

This study provides the first evidence that actin reorganization during AQP2 vesicular trafficking to the plasma membrane requires the functional involvement of ERM (ezrin/radixin/moesin) proteins cross-linking actin filaments with plasma membrane proteins. We report that forskolin stimulation was associated with a redistribution of moesin from intracellular sites to the cell cortex and with a concomitant enrichment of moesin in the particulate fraction in renal cells. Introduction of a peptide reproducing a short sequence of moesin within the binding site for F-actin induced all the key effects of forskolin stimulation, including a decrease in F-actin, translocation of endogenous moesin, and AQP2 translocation. A straightforward explanation for these effects is the ability of the peptide to uncouple moesin from its putative effector. This modifies the balance between the active and inactive forms of moesin. Extraction with Triton X-100, which preserves cytoskeletal associated proteins, showed that forskolin stimulation or peptide introduction reduced the amount of phophorylated moesin, a molecular modification known to stabilize moesin in an active state. Our data point to a dual role of moesin in AQP2 trafficking: it might modulate actin depolymerization and it participates in the reorganization of F-actin-containing cytoskeletal structures close to the fusion sites of the AQP2-bearing vesicles.


FEBS Letters | 2001

Ht31: the first protein kinase A anchoring protein to integrate protein kinase A and Rho signaling1

Enno Klussmann; Bayram Edemir; Barbara Pepperle; Grazia Tamma; Volker Henn; Erhard Klauschenz; Christian Hundsrucker; Kenan Maric; Walter Rosenthal

In an attempt to isolate protein kinase A anchoring proteins (AKAPs) involved in vasopressin‐mediated water reabsorbtion, the complete sequence of the human AKAP Ht31 was determined and a partial cDNA of its rat orthologue (Rt31) was cloned. The Ht31 cDNA includes the estrogen receptor cofactor Brx and the RhoA GDP/GTP exchange factor proto‐lymphoid blast crisis (Lbc) sequences. The Ht31 gene was assigned to chromosome 15 (region q24–q25). It encodes Ht31 and the smaller splice variants Brx and proto‐Lbc. A protein of the predicted size of Ht31 (309 kDa) was detected in human mammary carcinoma and HeLa cells. Anti‐Ht31/Rt31 antibodies immunoprecipitated RhoA from primary cultured rat renal inner medullary collecting duct cells, indicating an interaction between the AKAP and RhoA in vivo. These results suggest that Ht31/Rt31 represent a new type of AKAP, containing both an anchoring and a catalytic domain, which appears to be capable of modulating the activity of an interacting partner. Ht31/Rt31 have the potential to integrate Rho and protein kinase A signaling pathways, and thus, are prime candidates to regulate vasopressin‐mediated water reabsorbtion.


PLOS ONE | 2012

Calcium-Sensing Receptor and Aquaporin 2 Interplay in Hypercalciuria-Associated Renal Concentrating Defect in Humans. An In Vivo and In Vitro Study

Giuseppe Procino; Lisa Mastrofrancesco; Grazia Tamma; Domenica Lasorsa; Marianna Ranieri; Gilda Stringini; Francesco Emma; Maria Svelto; Giovanna Valenti

One mechanism proposed for reducing the risk of calcium renal stones is activation of the calcium-sensing receptor (CaR) on the apical membranes of collecting duct principal cells by high luminal calcium. This would reduce the abundance of aquaporin-2 (AQP2) and in turn the rate of water reabsorption. While evidence in cells and in hypercalciuric animal models supports this hypothesis, the relevance of the interplay between the CaR and AQP2 in humans is not clear. This paper reports for the first time a detailed correlation between urinary AQP2 excretion under acute vasopressin action (DDAVP treatment) in hypercalciuric subjects and in parallel analyzes AQP2-CaR crosstalk in a mouse collecting duct cell line (MCD4) expressing endogenous and functional CaR. In normocalciurics, DDAVP administration resulted in a significant increase in AQP2 excretion paralleled by an increase in urinary osmolality indicating a physiological response to DDAVP. In contrast, in hypercalciurics, baseline AQP2 excretion was high and did not significantly increase after DDAVP. Moreover DDAVP treatment was accompanied by a less pronounced increase in urinary osmolality. These data indicate reduced urinary concentrating ability in response to vasopressin in hypercalciurics. Consistent with these results, biotinylation experiments in MCD4 cells revealed that membrane AQP2 expression in unstimulated cells exposed to CaR agonists was higher than in control cells and did not increase significantly in response to short term exposure to forskolin (FK). Interestingly, we found that CaR activation by specific agonists reduced the increase in cAMP and prevented any reduction in Rho activity in response to FK, two crucial pathways for AQP2 translocation. These data support the hypothesis that CaR–AQP2 interplay represents an internal renal defense to mitigate the effects of hypercalciuria on the risk of calcium precipitation during antidiuresis. This mechanism and possibly reduced medulla tonicity may explain the lower concentrating ability observed in hypercalciuric patients.

Collaboration


Dive into the Grazia Tamma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge