Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianne Petry is active.

Publication


Featured researches published by Marianne Petry.


Nature Genetics | 2006

The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4

John A. Sayer; Edgar A. Otto; John F. O'Toole; Gudrun Nürnberg; Michael A. Kennedy; Christian F. W. Becker; Hans Christian Hennies; Juliana Helou; Massimo Attanasio; Blake V. Fausett; Boris Utsch; Hemant Khanna; Yan Liu; Iain A. Drummond; Isao Kawakami; Takehiro Kusakabe; Motoyuki Tsuda; Li Ma; Hwankyu Lee; Ronald G. Larson; Susan J. Allen; Christopher J. Wilkinson; Erich A. Nigg; Chengchao Shou; Concepción Lillo; David S. Williams; Bernd Hoppe; Markus J. Kemper; Thomas J. Neuhaus; Melissa A. Parisi

The molecular basis of nephronophthisis, the most frequent genetic cause of renal failure in children and young adults, and its association with retinal degeneration and cerebellar vermis aplasia in Joubert syndrome are poorly understood. Using positional cloning, we here identify mutations in the gene CEP290 as causing nephronophthisis. It encodes a protein with several domains also present in CENPF, a protein involved in chromosome segregation. CEP290 (also known as NPHP6) interacts with and modulates the activity of ATF4, a transcription factor implicated in cAMP-dependent renal cyst formation. NPHP6 is found at centrosomes and in the nucleus of renal epithelial cells in a cell cycle–dependent manner and in connecting cilia of photoreceptors. Abrogation of its function in zebrafish recapitulates the renal, retinal and cerebellar phenotypes of Joubert syndrome. Our findings help establish the link between centrosome function, tissue architecture and transcriptional control in the pathogenesis of cystic kidney disease, retinal degeneration, and central nervous system development.


Development | 2005

Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2

Manvendra K. Singh; Vincent M. Christoffels; José M. Dias; Mark-Oliver Trowe; Marianne Petry; Karin Schuster-Gossler; Antje Bürger; Johan Ericson; Andreas Kispert

Tbx20, a member of the T-box family of transcriptional regulators, shows evolutionary conserved expression in the developing heart. In the mouse, Tbx20 is expressed in the cardiac crescent, then in the endocardium and myocardium of the linear and looped heart tube before it is restricted to the atrioventricular canal and outflow tract in the multi-chambered heart. Here, we show that Tbx20 is required for progression from the linear heart tube to a multi-chambered heart. Mice carrying a targeted mutation of Tbx20 show early embryonic lethality due to hemodynamic failure. A linear heart tube with normal anteroposterior patterning is established in the mutant. The tube does not elongate, indicating a defect in recruitment of mesenchyme from the secondary heart field, even though markers of the secondary heart field are not affected. Furthermore, dorsoventral patterning of the tube, formation of working myocardium, looping, and further differentiation and morphogenesis fail. Instead, Tbx2, Bmp2 and vinexin α (Sh3d4), genes normally restricted to regions of primary myocardium and lining endocardium, are ectopically expressed in the linear heart tube of Tbx20 mutant embryos. Because Tbx2 is both necessary and sufficient to repress chamber differentiation (Christoffels et al., 2004a; Harrelson et al., 2004), Tbx20 may ensure progression to a multi-chambered heart by repressing Tbx2 in the myocardial precursor cells of the linear heart tube destined to form the chambers.


Journal of Clinical Investigation | 2006

Tbx18 regulates the development of the ureteral mesenchyme

Rannar Airik; Markus Bussen; Manvendra K. Singh; Marianne Petry; Andreas Kispert

Congenital malformations of the urinary tract are a major cause of renal failure in children and young adults. They are often caused by physical obstruction or by functional impairment of the peristaltic machinery of the ureter. The underlying molecular and cellular defects are, however, poorly understood. Here we present the phenotypic characterization of a new mouse model for congenital ureter malformation that revealed the molecular pathway important for the formation of the functional mesenchymal coating of the ureter. The gene encoding the T-box transcription factor Tbx18 was expressed in undifferentiated mesenchymal cells surrounding the distal ureter stalk. In Tbx18-/- mice, prospective ureteral mesenchymal cells largely dislocalized to the surface of the kidneys. The remaining ureteral mesenchymal cells showed reduced proliferation and failed to differentiate into smooth muscles, but instead became fibrous and ligamentous tissue. Absence of ureteral smooth muscles resulted in a short hydroureter and hydronephrosis at birth. Our analysis also showed that the ureteral mesenchyme derives from a distinct cell population that is separated early in kidney development from that of other mesenchymal cells of the renal system.


Circulation Research | 2009

Tbx20 Interacts With Smads to Confine Tbx2 Expression to the Atrioventricular Canal

Reena Singh; Thomas Horsthuis; Henner F. Farin; Thomas Grieskamp; Julia Norden; Marianne Petry; Vincent Wakker; Antoon F. M. Moorman; Vincent M. Christoffels; Andreas Kispert

Rationale: T-box transcription factors play critical roles in the coordinated formation of the working chambers and the atrioventricular canal (AVC). Tbx2 patterns embryonic myocardial cells to form the AVC and suppresses their differentiation into chamber myocardium. Tbx20-deficient embryos, which fail to form chambers, ectopically express Tbx2 throughout the entire heart tube, providing a potential mechanism for the function of Tbx20 in chamber differentiation. Objective: To identify the mechanism of Tbx2 suppression by Tbx20 and to investigate the involvement of Tbx2 in Tbx20-mediated chamber formation. Methods and Results: We generated Tbx20 and Tbx2 single and double knockout embryos and observed that loss of Tbx2 did not rescue the Tbx20-deficient heart from failure to form chambers. However, Tbx20 is required to suppress Tbx2 in the developing chambers, a prerequisite to localize its strong differentiation-inhibiting activity to the AVC. We identified a bone morphogenetic protein (Bmp)/Smad-dependent Tbx2 enhancer conferring AVC-restricted expression and Tbx20-dependent chamber suppression of Tbx2 in vivo. Unexpectedly, we found in transfection and localization studies in vitro that both Tbx20 and mutant isoforms of Tbx20 unable to bind DNA attenuate Bmp/Smad-dependent activation of Tbx2 by binding Smad1 and Smad5 and sequestering them from Smad4. Conclusions: Our data suggest that Tbx20 directly interferes with Bmp/Smad signaling to suppress Tbx2 expression in the chambers, thereby confining Tbx2 expression to the prospective AVC region.


Mechanisms of Development | 2005

The T-box transcription factor Tbx15 is required for skeletal development

Manvendra K. Singh; Marianne Petry; Bénédicte Haenig; Birgit Lescher; Michael Leitges; Andreas Kispert

During early limb development several signaling centers coordinate limb bud outgrowth as well as patterning. Members of the T-box gene family of transcriptional regulators are crucial players in these processes by activating and interpreting these signaling pathways. Here, we show that Tbx15, a member of this gene family, is expressed during limb development, first in the mesenchyme of the early limb bud, then during early endochondral bone development in prehypertrophic chondrocytes of cartilaginous templates. Expression is also found in mesenchymal precursor cells and prehypertrophic chondrocytes, respectively, during development of skeletal elements of the vertebral column and the head. Analysis of Tbx15 null mutant mice indicates a role of Tbx15 in the development of skeletal elements throughout the body. Mutants display a general reduction of bone size and changes of bone shape. In the forelimb skeleton, the scapula lacks the central region of the blade. Cartilaginous templates are already reduced in size and show a transient delay in ossification in mutant embryos. Mutants show a significantly reduced proliferation of prehypertrophic chondrocytes as well as of mesenchymal precursor cells. These data suggest that Tbx15 plays an important role in the development of the skeleton of the limb, vertebral column and head by controlling the number of mesenchymal precursor cells and chondrocytes.


Hepatology | 2009

Tbx3 Promotes Liver Bud Expansion During Mouse Development by Suppression of Cholangiocyte Differentiation

Timo H.-W. Lüdtke; Vincent M. Christoffels; Marianne Petry; Andreas Kispert

After specification of the hepatic endoderm, mammalian liver organogenesis progresses through a series of morphological stages that culminate in the migration of hepatocytes into the underlying mesenchyme to populate the hepatic lobes. Here, we show that in the mouse the transcriptional repressor Tbx3, a member of the T‐box protein family, is required for the transition from a hepatic diverticulum with a pseudo‐stratified epithelium to a cell‐emergent liver bud. In Tbx3‐deficient embryos, proliferation in the hepatic epithelium is severely reduced, hepatoblasts fail to delaminate, and cholangiocyte rather than hepatocyte differentiation occurs. Molecular analyses suggest that the primary function of Tbx3 is to maintain expression of hepatocyte transcription factors, including hepatic nuclear factor 4a (Hnf4a) and CCAAT/enhancer binding protein (C/EBP), alpha (Cebpa), and to repress expression of cholangiocyte transcription factors such as Onecut1 (Hnf6) and Hnf1b. Conclusion: Tbx3 controls liver bud expansion by suppressing cholangiocyte and favoring hepatocyte differentiation in the liver bud. (HEPATOLOGY 2009.)


Cellular and Molecular Life Sciences | 2012

Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation

Reena Singh; Willem M.H. Hoogaars; Phil Barnett; Thomas Grieskamp; M. Sameer Rana; Henk P. J. Buermans; Henner F. Farin; Marianne Petry; Todd Heallen; James F. Martin; Antoon F. M. Moorman; Peter A. C. 't Hoen; Andreas Kispert; Vincent M. Christoffels

A key step in heart development is the coordinated development of the atrioventricular canal (AVC), the constriction between the atria and ventricles that electrically and physically separates the chambers, and the development of the atrioventricular valves that ensure unidirectional blood flow. Using knock-out and inducible overexpression mouse models, we provide evidence that the developmentally important T-box factors Tbx2 and Tbx3, in a functionally redundant manner, maintain the AVC myocardium phenotype during the process of chamber differentiation. Expression profiling and ChIP-sequencing analysis of Tbx3 revealed that it directly interacts with and represses chamber myocardial genes, and induces the atrioventricular pacemaker-like phenotype by activating relevant genes. Moreover, mutant mice lacking 3 or 4 functional alleles of Tbx2 and Tbx3 failed to form atrioventricular cushions, precursors of the valves and septa. Tbx2 and Tbx3 trigger development of the cushions through a regulatory feed-forward loop with Bmp2, thus providing a mechanism for the co-localization and coordination of these important processes in heart development.


PLOS Genetics | 2013

Tbx2 controls lung growth by direct repression of the cell cycle inhibitor genes Cdkn1a and Cdkn1b.

Timo H.-W. Lüdtke; Henner F. Farin; Carsten Rudat; Karin Schuster-Gossler; Marianne Petry; Phil Barnett; Vincent M. Christoffels; Andreas Kispert

Vertebrate organ development relies on the precise spatiotemporal orchestration of proliferation rates and differentiation patterns in adjacent tissue compartments. The underlying integration of patterning and cell cycle control during organogenesis is insufficiently understood. Here, we have investigated the function of the patterning T-box transcription factor gene Tbx2 in lung development. We show that lungs of Tbx2-deficient mice are markedly hypoplastic and exhibit reduced branching morphogenesis. Mesenchymal proliferation was severely decreased, while mesenchymal differentiation into fibrocytes was prematurely induced. In the epithelial compartment, proliferation was reduced and differentiation of alveolar epithelial cells type 1 was compromised. Prior to the observed cellular changes, canonical Wnt signaling was downregulated, and Cdkn1a (p21) and Cdkn1b (p27) (two members of the Cip/Kip family of cell cycle inhibitors) were strongly induced in the Tbx2-deficient lung mesenchyme. Deletion of both Cdkn1a and Cdkn1b rescued, to a large degree, the growth deficits of Tbx2-deficient lungs. Prolongation of Tbx2 expression into adulthood led to hyperproliferation and maintenance of mesenchymal progenitor cells, with branching morphogenesis remaining unaffected. Expression of Cdkn1a and Cdkn1b was ablated from the lung mesenchyme in this gain-of-function setting. We further show by ChIP experiments that Tbx2 directly binds to Cdkn1a and Cdkn1b loci in vivo, defining these two genes as direct targets of Tbx2 repressive activity in the lung mesenchyme. We conclude that Tbx2-mediated regulation of Cdkn1a and Cdkn1b represents a crucial node in the network integrating patterning information and cell cycle regulation that underlies growth, differentiation, and branching morphogenesis of this organ.


Human Molecular Genetics | 2010

Hydroureternephrosis due to loss of Sox9-regulated smooth muscle cell differentiation of the ureteric mesenchyme

Rannar Airik; Mark-Oliver Trowe; Anna Foik; Henner F. Farin; Marianne Petry; Karin Schuster-Gossler; Michaela Schweizer; Gerd Scherer; Ralf Kist; Andreas Kispert

Congenital ureter anomalies, including hydroureter, affect up to 1% of the newborn children. Despite the prevalence of these developmental abnormalities in young children, the underlying molecular causes are only poorly understood. Here, we show that the high mobility group domain transcription factor Sox9 plays an important role in ureter development in the mouse. Transient Sox9 expression was detected in the undifferentiated ureteric mesenchyme and inactivation of Sox9 in this domain resulted in strong proximal hydroureter formation due to functional obstruction. Loss of Sox9 did not affect condensation, proliferation and apoptosis of the undifferentiated mesenchyme, but perturbed cyto-differentiation into smooth muscle cells (SMCs). Expression of genes encoding extracellular matrix (ECM) components was strongly reduced, suggesting that deficiency in ECM composition and/or signaling may underlie the observed defects. Prolonged expression of Sox9 in the ureteric mesenchyme led to increased deposition of ECM components and SMC dispersal. Furthermore, Sox9 genetically interacts with the T-box transcription factor 18 gene (Tbx18) during ureter development at two levels--as a downstream mediator of Tbx18 function and in a converging pathway. Together, our results argue that obstructive uropathies in campomelic dysplasia patients that are heterozygous for mutations in and around SOX9 arise from a primary requirement of Sox9 in the development of the ureteric mesenchyme.


Circulation Research | 2010

Wt1 and retinoic acid signaling in the subcoelomic mesenchyme control the development of the pleuropericardial membranes and the sinus horns.

Julia Norden; Thomas Grieskamp; Ekkehart Lausch; Bram van Wijk; Maurice J.B. van den Hoff; Christoph Englert; Marianne Petry; Mathilda T.M. Mommersteeg; Vincent M. Christoffels; Karen Niederreither; Andreas Kispert

Rationale: The cardiac venous pole is a common focus of congenital malformations and atrial arrhythmias, yet little is known about the cellular and molecular mechanisms that regulate its development. The systemic venous return myocardium (sinus node and sinus horns) forms only late in cardiogenesis from a pool of pericardial mesenchymal precursor cells. Objective: To analyze the cellular and molecular mechanisms directing the formation of the fetal sinus horns. Methods and Results: We analyzed embryos deficient for the Wt1 (Wilms tumor 1) gene and observed a failure to form myocardialized sinus horns. Instead, the cardinal veins become embedded laterally in the pleuropericardial membranes that remain tethered to the lateral body wall by the persisting subcoelomic mesenchyme, a finding that correlates with decreased apoptosis in this region. We show by expression analysis and lineage tracing studies that Wt1 is expressed in the subcoelomic mesenchyme surrounding the cardinal veins, but that this Wt1-positive mesenchyme does not contribute cells to the sinus horn myocardium. Expression of the Raldh2 (aldehyde dehydrogenase family 1, subfamily A2) gene was lost from this mesenchyme in Wt1−/− embryos. Phenotypic analysis of Raldh2 mutant mice rescued from early cardiac defects by retinoic acid food supply revealed defects of the venous pole and pericardium highly similar to those of Wt1−/− mice. Conclusions: Pericardium and sinus horn formation are coupled and depend on the expansion and correct temporal release of pleuropericardial membranes from the underlying subcoelomic mesenchyme. Wt1 and downstream Raldh2/retinoic acid signaling are crucial regulators of this process. Thus, our results provide novel insight into the genetic and cellular pathways regulating the posterior extension of the mammalian heart and the formation of its coelomic lining.

Collaboration


Dive into the Marianne Petry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rannar Airik

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge