Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianne Schimpl is active.

Publication


Featured researches published by Marianne Schimpl.


Nature Chemical Biology | 2012

O -GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis

Marianne Schimpl; Xiaowei Zheng; Vladimir S. Borodkin; David E. Blair; Andrew T. Ferenbach; Alexander W. Schüttelkopf; Iva Navratilova; Tonia Aristotelous; Osama Albarbarawi; David A. Robinson; Megan A. Macnaughtan; Daan M. F. van Aalten

Protein O-GlcNAcylation is an essential post-translational modification on hundreds of intracellular proteins in metazoa, catalyzed by O-GlcNAc transferase using unknown mechanisms of transfer and substrate recognition. Through crystallographic snapshots and mechanism-inspired chemical probes, we define how human O-GlcNAc transferase recognizes the sugar donor and acceptor peptide and employs a novel catalytic mechanism of glycosyl transfer, involving the sugar donor α-phosphate as the catalytic base, as well as an essential lysine. This mechanism appears to be a unique evolutionary solution to the spatial constraints imposed by a bulky protein acceptor substrate, and explains the unexpected specificity of a recently reported metabolic O-GlcNAc transferase inhibitor.


Biochemical Journal | 2009

Glcnacstatins are Nanomolar Inhibitors of Human O-Glcnacase Inducing Cellular Hyper-O-Glcnacylation

Helge C. Dorfmueller; Vladimir S. Borodkin; Marianne Schimpl; Daan M. F. van Aalten

O-GlcNAcylation is an essential, dynamic and inducible post-translational glycosylation of cytosolic proteins in metazoa and can show interplay with protein phosphorylation. Inhibition of OGA (O-GlcNAcase), the enzyme that removes O-GlcNAc from O-GlcNAcylated proteins, is a useful strategy to probe the role of this modification in a range of cellular processes. In the present study, we report the rational design and evaluation of GlcNAcstatins, a family of potent, competitive and selective inhibitors of human OGA. Kinetic experiments with recombinant human OGA reveal that the GlcNAcstatins are the most potent human OGA inhibitors reported to date, inhibiting the enzyme in the sub-nanomolar to nanomolar range. Modification of the GlcNAcstatin N-acetyl group leads to up to 160-fold selectivity against the human lysosomal hexosaminidases which employ a similar substrate-assisted catalytic mechanism. Mutagenesis studies in a bacterial OGA, guided by the structure of a GlcNAcstatin complex, provides insight into the role of conserved residues in the human OGA active site. GlcNAcstatins are cell-permeant and, at low nanomolar concentrations, effectively modulate intracellular O-GlcNAc levels through inhibition of OGA, in a range of human cell lines. Thus these compounds are potent selective tools to study the cell biology of O-GlcNAc.


Nature Structural & Molecular Biology | 2015

The active site of O-GlcNAc transferase imposes constraints on substrate sequence.

Shalini Pathak; Jana Alonso; Marianne Schimpl; Karim Rafie; David E. Blair; Vladimir S. Borodkin; Alexander W. Schüttelkopf; Osama Albarbarawi; Daan M. F. van Aalten

O-GlcNAc transferase (OGT) glycosylates a diverse range of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc), an essential and dynamic post-translational modification in metazoans. Although this enzyme modifies hundreds of proteins with O-GlcNAc, it is not understood how OGT achieves substrate specificity. In this study, we describe the application of a high-throughput OGT assay to a library of peptides. We mapped sites of O-GlcNAc modification by electron transfer dissociation MS and found that they correlate with previously detected O-GlcNAc sites. Crystal structures of four acceptor peptides in complex with Homo sapiens OGT suggest that a combination of size and conformational restriction defines sequence specificity in the −3 to +2 subsites. This work reveals that although the N-terminal TPR repeats of OGT may have roles in substrate recognition, the sequence restriction imposed by the peptide-binding site makes a substantial contribution to O-GlcNAc site specificity.


Chemistry & Biology | 2010

Cell-Penetrant, Nanomolar O-GlcNAcase Inhibitors Selective against Lysosomal Hexosaminidases

Helge C. Dorfmueller; Vladimir S. Borodkin; Marianne Schimpl; Xiaowei Zheng; Robert Kime; Kevin D. Read; Daan M. F. van Aalten

Summary Posttranslational modification of metazoan nucleocytoplasmic proteins with N-acetylglucosamine (O-GlcNAc) is essential, dynamic, and inducible and can compete with protein phosphorylation in signal transduction. Inhibitors of O-GlcNAcase, the enzyme removing O-GlcNAc, are useful tools for studying the role of O-GlcNAc in a range of cellular processes. We report the discovery of nanomolar OGA inhibitors that are up to 900,000-fold selective over the related lysosomal hexosaminidases. When applied at nanomolar concentrations on live cells, these cell-penetrant molecules shift the O-GlcNAc equilibrium toward hyper-O-GlcNAcylation with EC50 values down to 3 nM and are thus invaluable tools for the study of O-GlcNAc cell biology.


Biochemical Journal | 2010

Human OGA binds substrates in a conserved peptide recognition groove.

Marianne Schimpl; Alexander W. Schüttelkopf; Vladimir S. Borodkin; Daan M. F. van Aalten

Modification of cellular proteins with O-GlcNAc (O-linked N-acetylglucosamine) competes with protein phosphorylation and regulates a plethora of cellular processes. O-GlcNAcylation is orchestrated by two opposing enzymes, O-GlcNAc transferase and OGA (O-GlcNAcase or β-N-acetylglucosaminidase), which recognize their target proteins via as yet unidentified mechanisms. In the present study, we uncovered the first insights into the mechanism of substrate recognition by human OGA. The structure of a novel bacterial OGA orthologue reveals a putative substrate-binding groove, conserved in metazoan OGAs. Guided by this structure, conserved amino acids lining this groove in human OGA were mutated and the activity on three different substrate proteins [TAB1 (transforming growth factor-β-activated protein kinase 1-binding protein 1), FoxO1 (forkhead box O1) and CREB (cAMP-response-element-binding protein)] was tested in an in vitro deglycosylation assay. The results provide the first evidence that human OGA may possess a substrate-recognition mechanism that involves interactions with O-GlcNAcylated proteins beyond the GlcNAc-binding site, with possible implications for differential regulation of cycling of O-GlcNAc on different proteins.


Chemistry & Biology | 2012

Synergy of Peptide and Sugar in O-GlcNAcase Substrate Recognition

Marianne Schimpl; Vladimir S. Borodkin; Lindsey J. Gray; Daan M. F. van Aalten

Summary Protein O-GlcNAcylation is an essential reversible posttranslational modification in higher eukaryotes. O-GlcNAc addition and removal is catalyzed by O-GlcNAc transferase and O-GlcNAcase, respectively. We report the molecular details of the interaction of a bacterial O-GlcNAcase homolog with three different synthetic glycopeptides derived from characterized O-GlcNAc sites in the human proteome. Strikingly, the peptides bind a conserved O-GlcNAcase substrate binding groove with similar orientation and conformation. In addition to extensive contacts with the sugar, O-GlcNAcase recognizes the peptide backbone through hydrophobic interactions and intramolecular hydrogen bonds, while avoiding interactions with the glycopeptide side chains. These findings elucidate the molecular basis of O-GlcNAcase substrate specificity, explaining how a single enzyme achieves cycling of the complete O-GlcNAc proteome. In addition, this work will aid development of O-GlcNAcase inhibitors that target the peptide binding site.


Biochemical Journal | 2012

Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties

Marianne Schimpl; Christina L. Rush; Marie Betou; Ian M. Eggleston; Anneliese D. Recklies; Daan M. F. van Aalten

The chitinase-like proteins YKL-39 (chitinase 3-like-2) and YKL-40 (chitinase 3-like-1) are highly expressed in a number of human cells independent of their origin (mesenchymal, epithelial or haemapoietic). Elevated serum levels of YKL-40 have been associated with a negative outcome in a number of diseases ranging from cancer to inflammation and asthma. YKL-39 expression has been associated with osteoarthritis. However, despite the reported association with disease, the physiological or pathological role of these proteins is still very poorly understood. Although YKL-39 is homologous to the two family 18 chitinases in the human genome, it has been reported to lack any chitinase activity. In the present study, we show that human YKL-39 possesses a chitinase-like fold, but lacks key active-site residues required for catalysis. A glycan screen identified oligomers of N-acetylglucosamine as preferred binding partners. YKL-39 binds chitooligosaccharides and a newly synthesized derivative of the bisdionin chitinase-inhibitor class with micromolar affinity, through a number of conserved tryptophan residues. Strikingly, the chitinase activity of YKL-39 was recovered by reverting two non-conservative substitutions in the active site to those found in the active enzymes, suggesting that YKL-39 is a pseudo-chitinase with retention of chitinase-like ligand-binding properties.


Biochemical Journal | 2014

Bisubstrate Udp-Peptide Conjugates as Human O-Glcnac Transferase Inhibitors.

Vladimir S. Borodkin; Marianne Schimpl; Mehmet Gundogdu; Karim Rafie; Helge C. Dorfmueller; David Robinson; Daan M. F. van Aalten

Inhibitors of OGT (O-GlcNAc transferase) are valuable tools to study the cell biology of protein O-GlcNAcylation. We report OGT bisubstrate-linked inhibitors (goblins) in which the acceptor serine in the peptide VTPVSTA is covalently linked to UDP, eliminating the GlcNAc pyranoside ring. Goblin1 co-crystallizes with OGT, revealing an ordered C3 linker and retained substrate-binding modes, and binds the enzyme with micromolar affinity, inhibiting glycosyltransfer on to protein and peptide substrates.


Nature Communications | 2015

Tyrosine glycosylation of Rho by Yersinia toxin impairs blastomere cell behaviour in zebrafish embryos

Thomas Jank; Stephanie Eckerle; Marcus Steinemann; Christoph Trillhaase; Marianne Schimpl; Sebastian Wiese; Daan M. F. van Aalten; Wolfgang Driever; Klaus Aktories

Yersinia species cause zoonotic infections, including enterocolitis and plague. Here we studied Yersinia ruckeri antifeeding prophage 18 (Afp18), the toxin component of the phage tail-derived protein translocation system Afp, which causes enteric redmouth disease in salmonid fish species. Here we show that microinjection of the glycosyltransferase domain Afp18G into zebrafish embryos blocks cytokinesis, actin-dependent motility and cell blebbing, eventually abrogating gastrulation. In zebrafish ZF4 cells, Afp18G depolymerizes actin stress fibres by mono-O-GlcNAcylation of RhoA at tyrosine-34; thereby Afp18G inhibits RhoA activation by guanine nucleotide exchange factors, and blocks RhoA, but not Rac and Cdc42 downstream signalling. The crystal structure of tyrosine-GlcNAcylated RhoA reveals an open conformation of the effector loop distinct from recently described structures of GDP- or GTP-bound RhoA. Unravelling of the molecular mechanism of the toxin component Afp18 as glycosyltransferase opens new perspectives in studies of phage tail-derived protein translocation systems, which are preserved from archaea to human pathogenic prokaryotes.


Journal of Biological Chemistry | 2014

O-GlcNAcase: promiscuous hexosaminidase or key regulator of O-GlcNAc signaling?

Jana Alonso; Marianne Schimpl; Daan M. F. van Aalten

O-GlcNAc signaling is regulated by an opposing pair of enzymes: O-GlcNAc transferase installs and O-GlcNAcase (OGA) removes the modification from proteins. The dynamics and regulation of this process are only beginning to be understood as the physiological functions of both enzymes are being probed using genetic and pharmacological approaches. This minireview charts the discovery and functional and structural analysis of OGA and summarizes the insights gained from recent studies using OGA inhibition, gene knock-out, and overexpression. We identify several areas of “known unknowns” that would benefit from future research, such as the enigmatic C-terminal domain of OGA.

Collaboration


Dive into the Marianne Schimpl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jana Alonso

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge