Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariano Marcano is active.

Publication


Featured researches published by Mariano Marcano.


American Journal of Physiology-renal Physiology | 2009

Parameter estimation for mathematical models of NKCC2 cotransporter isoforms.

Mariano Marcano; Hun-Mo Yang; Aniel Nieves-Gonzalez; Chris Clausen; Leon C. Moore

An optimization problem, formulated using a nonlinear least-squares approach, was used to estimate parameters for kinetic models of the three isoforms of the kidney-specific Na-K-2Cl (NKCC2) cotransporter. Specifically, the optimization problem estimates the magnitude of model parameters (i.e., off-binding and translocation rate constants) by minimizing the distance between model unidirectional fluxes and published unidirectional (86)Rb(+) uptake curves for the A, B, and F isoforms of the NKCC2 cotransporter obtained in transfected Xenopus oocytes. By using different symmetry assumptions, NKCC2 models with five, six, seven, or eight parameters were evaluated. The optimization method identified parameter sets that yielded computed unidirectional fluxes consistent with the uptake data. However, the parameter values were not unique, in that systematic exploration of the parameter space revealed alternative parameter sets that fit the data with similar accuracy. Finally, we demonstrate that the optimization method can identify parameter sets for the three transporter isoforms that differ only in ion binding affinities, a result that is consistent with a published mutagenesis analysis of the molecular and structural bases for the differences in (86)Rb(+) uptake among the A, B, and F isoforms. These NKCC2 cotransporter models will facilitate the development of larger scale models of ion transport by thick ascending limb cells.


Journal of Theoretical Biology | 2013

Immune response to a pathogen in corals

Claudia Patricia Ruiz-Diaz; Carlos Toledo-Hernández; Alberto M. Sabat; Mariano Marcano

The sea fan coral (Gorgonia ventalina), one of the most abundant gorgonians in the tropical and subtropical Atlantic waters, have suffered several diseases that have diminished its abundance throughout their range. In this study, we present a model that analyzes the capacity of G. ventalina to eradicate a micro-pathogen under three immune responses: strong, moderate, and very weak. The model assumes that: (1) polyps are the main unit of the coral; (2) the population of polyps is homogeneously distributed; and (3) the immune system is activated by a signal. When an endosymbiont exceeds a density threshold, it becomes pathogenic, increasing polyp mortality. As a consequence, the colony emits a signal to its stem cells to differentiate into phagocytic and humoral cells, both of which combat the pathogen. Given a strong immune response, the pathogen is rapidly eradicated by the immune cells, and the coral polyp population returns to an equilibrium state. With a moderate immune response, polyps and pathogen coexist, but the maximum capacity of polyp density is never reached. An immunologically compromised colony offering a weak immune response is unable to stop pathogen growth, and the colony dies. This analysis suggests an alternative explanation for the spatial and temporal variability in disease incidence and mortality, which is based on the strength of the immune system of hosts rather than the virulence of the pathogen.


Bulletin of Mathematical Biology | 2010

Maximum Urine Concentrating Capability in a Mathematical Model of the Inner Medulla of the Rat Kidney

Mariano Marcano; Anita T. Layton; Harold E. Layton

In a mathematical model of the urine concentrating mechanism of the inner medulla of the rat kidney, a nonlinear optimization technique was used to estimate parameter sets that maximize the urine-to-plasma osmolality ratio (U/P) while maintaining the urine flow rate within a plausible physiologic range. The model, which used a central core formulation, represented loops of Henle turning at all levels of the inner medulla and a composite collecting duct (CD). The parameters varied were: water flow and urea concentration in tubular fluid entering the descending thin limbs and the composite CD at the outer-inner medullary boundary; scaling factors for the number of loops of Henle and CDs as a function of medullary depth; location and increase rate of the urea permeability profile along the CD; and a scaling factor for the maximum rate of NaCl transport from the CD. The optimization algorithm sought to maximize a quantity E that equaled U/P minus a penalty function for insufficient urine flow. Maxima of E were sought by changing parameter values in the direction in parameter space in which E increased. The algorithm attained a maximum E that increased urine osmolality and inner medullary concentrating capability by 37.5% and 80.2%, respectively, above base-case values; the corresponding urine flow rate and the concentrations of NaCl and urea were all within or near reported experimental ranges. Our results predict that urine osmolality is particularly sensitive to three parameters: the urea concentration in tubular fluid entering the CD at the outer-inner medullary boundary, the location and increase rate of the urea permeability profile along the CD, and the rate of decrease of the CD population (and thus of CD surface area) along the cortico-medullary axis.


American Journal of Physiology-renal Physiology | 2013

Fluid dilution and efficiency of Na+ transport in a mathematical model of a thick ascending limb cell

Aniel Nieves-Gonzalez; Chris Clausen; Mariano Marcano; Anita T. Layton; Harold E. Layton; Leon C. Moore

Thick ascending limb (TAL) cells are capable of reducing tubular fluid Na(+) concentration to as low as ~25 mM, and yet they are thought to transport Na(+) efficiently owing to passive paracellular Na(+) absorption. Transport efficiency in the TAL is of particular importance in the outer medulla where O(2) availability is limited by low blood flow. We used a mathematical model of a TAL cell to estimate the efficiency of Na(+) transport and to examine how tubular dilution and cell volume regulation influence transport efficiency. The TAL cell model represents 13 major solutes and the associated transporters and channels; model equations are based on mass conservation and electroneutrality constraints. We analyzed TAL transport in cells with conditions relevant to the inner stripe of the outer medulla, the cortico-medullary junction, and the distal cortical TAL. At each location Na(+) transport efficiency was computed as functions of changes in luminal NaCl concentration ([NaCl]), [K(+)], [NH(4)(+)], junctional Na(+) permeability, and apical K(+) permeability. Na(+) transport efficiency was calculated as the ratio of total net Na(+) transport to transcellular Na(+) transport. Transport efficiency is predicted to be highest at the cortico-medullary boundary where the transepithelial Na(+) gradient is the smallest. Transport efficiency is lowest in the cortex where luminal [NaCl] approaches static head.


American Journal of Physiology-renal Physiology | 2015

Parameter estimation for mathematical models of a nongastric H+(Na+)-K+(NH4+)-ATPase

Mónica Nadal-Quirós; Leon C. Moore; Mariano Marcano

The role of nongastric H(+)-K(+)-ATPase (HKA) in ion homeostasis of macula densa (MD) cells is an open question. To begin to explore this issue, we developed two mathematical models that describe ion fluxes through a nongastric HKA. One model assumes a 1H(+):1K(+)-per-ATP stoichiometry; the other assumes a 2H(+):2K(+)-per-ATP stoichiometry. Both models include Na+ and NH4+ competitive binding with H+ and K+, respectively, a characteristic observed in vitro and in situ. Model rate constants were obtained by minimizing the distance between model and experimental outcomes. Both 1H(+)(1Na(+)):1K(+)(1NH4 (+))-per-ATP and 2H(+)(2Na(+)):2K(+)(2NH4 (+))-per-ATP models fit the experimental data well. Using both models, we simulated ion net fluxes as a function of cytosolic or luminal ion concentrations typical for the cortical thick ascending limb and MD region. We observed that (1) K+ and NH4+ flowed in the lumen-to-cytosol direction, (2) there was competitive behavior between luminal K+ and NH4+ and between cytosolic Na+ and H+, 3) ion fluxes were highly sensitive to changes in cytosolic Na+ or H+ concentrations, and 4) the transporter does mostly Na+ / K+ exchange under physiological conditions. These results support the concept that nongastric HKA may contribute to Na+ and pH homeostasis in MD cells. Furthermore, in both models, H+ flux reversed at a luminal pH that was <5.6. Such reversal led to Na+ / H+ exchange for a luminal pH of <2 and 4 in the 1:1-per-ATP and 2:2-per-ATP models, respectively. This suggests a novel role of nongastric HKA in cell Na+ homeostasis in the more acidic regions of the renal tubules.


Applied Mathematics Letters | 1998

Preferential interaction and inverse problem algorithms in models of renal concentrating mechanism

R.P. Tewarson; W. Toro; Mariano Marcano

Abstract Formulas for transmural transport parameters between two adjacent interacting tubes are derived. Results of computational experiments with a mathematical model of the kidney are given. These results show that only four of optimal parameters, obtained by an inverse algorithm, need to be different from experimental values, to get fairly good concentration profiles. Preferential interaction is shown to result in further improvement to these profiles.


Ecological Modelling | 2012

A diffusive logistic growth model to describe forest recovery

Miguel A. Acevedo; Mariano Marcano; Robert J. Fletcher


Bulletin of Mathematical Biology | 2006

An Optimization Algorithm for a Distributed-Loop Model of an Avian Urine Concentrating Mechanism

Mariano Marcano; Anita T. Layton; Harold E. Layton


The FASEB Journal | 2015

A Simulated Cell Reprogramming from a Pharmacological Perspective

Monica Nadal-Quiros; Leon C. Moore; Mariano Marcano


The FASEB Journal | 2014

Low basolateral Na+ pump activity in macula densa cells may be necessary to generate tubuloglomerular feedback responses (892.32)

Monica Nadal-Quiros; Aniel Nieves-Gonzalez; Leon C. Moore; Mariano Marcano

Collaboration


Dive into the Mariano Marcano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R.P. Tewarson

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge