Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where nan Mariati is active.

Publication


Featured researches published by nan Mariati.


Journal of Biotechnology | 2012

IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines.

Steven C. L. Ho; Muriel Bardor; Huatao Feng; Mariati; Yen Wah Tong; Zhiwei Song; Miranda G.S. Yap; Yuansheng Yang

A Tricistronic vector utilizing internal ribosome entry site (IRES) elements to express the light chain (LC), heavy chain (HC), and a neomycin phosphotransferase (NPT) selection marker from one transcript is designed for generation of mAb expressing CHO cell lines. As compared to the commonly used vectors, benefits of this design include: (1) minimized non-expressing clones, (2) enhanced stable mAb productivity without gene amplification, (3) control of LC and HC expression at defined ratios, and (4) consistent product quality. After optimization of the LC and HC arrangement and increasing selection stringency by weakening the NPT selection marker, this Tricistronic vector is able to generate stably transfected pools with specific productivity (qmAb) greater than 5pg/cell/day (pcd) and titers over 150mg/L. 5% of clones from these pools have qmAb greater than 20pcd and titers ranging from 300 to more than 500mg/L under non-optimized shake flask batch cultures using commercially available protein-free medium. The mAb produced by these clones have low aggregation and consistent glycosylation profiles. The entire process of transfection to high-expressing clones requires only 6 months. The IRES-mediated Tricistronic vector provides an attractive alternative to commonly used vectors for fast generation of mAb CHO cell lines with high productivity.


Biotechnology and Bioengineering | 2009

Mutated polyadenylation signals for controlling expression levels of multiple genes in mammalian cells

Yuansheng Yang; Mariati; Steven C. L. Ho; Miranda G.S. Yap

A set of mutated SV40 early polyadenylation signals (SV40pA) with varying strengths is generated by mutating the AATAAA sequence in the wild‐type SV40pA. They are shown to control the expression level of a gene over a 10‐fold range using luciferase reporter genes in transient transfection assays. The relative strength of these SV40pA variants remains similar under three commonly used mammalian promoters and in five mammalian cell lines. Application of SV40pA variants for controlling expression level of multiple genes is demonstrated in a study of monoclonal antibody (mAb) synthesis in mammalian cells. By using SV40pA variants of different strengths, the expression of light chain (LC) and heavy chain (HC) genes encoded in a single vector is independently altered which results in different ratios of LC to HC expression spanning a range from 0.24 to 16.42. The changes in gene expression are determined by measuring mRNA levels and intracellular LC and HC polypeptides. It is found that a substantial decrease of HC expression, which increases the LC/HC mRNA ratio, only slightly reduces mAb production. However, reducing the LC expression by a similar magnitude, which decreases the LC/HC mRNA ratio results in a sharp decline of mAb production to trace amounts. This set of SV40pA variants offers a new tool for accurate control of the relative expression levels of multiple genes. It will have wide‐ranging applications in fields related to the study of biosynthesis of multi‐subunit proteins, proteomic research on protein interactions, and multi‐gene metabolic engineering. Biotechnol. Bioeng. 2009;102: 1152–1160.


Molecular Biotechnology | 2015

Impact of Using Different Promoters and Matrix Attachment Regions on Recombinant Protein Expression Level and Stability in Stably Transfected CHO Cells

Steven C. L. Ho; Mariati; Jessna H. M. Yeo; Shiyi Goh Fang; Yuansheng Yang

High expression level and long-term expression stability are required for therapeutic protein production in mammalian cells. Three commonly used promoters from the simian virus 40 (SV40), the CHO elongation factor 1α gene (EF1α), and the human cytomegalovirus major immediate early gene (CMV) and two matrix attachment regions from the chicken lysozyme gene (cMAR) and the human interferon β (iMAR) were evaluated for enhancing recombinant gene expression level and stability in stably transfected CHO cells. In the absence of MAR elements, the SV40 promoter gave lower expression level but higher stability than the EF1α promoter and the CMV promoter. The inclusion of MAR elements did not increase the integrated gene copies for all promoters but did enhance expression level for only the SV40 promoter. The enhanced gene expression was due to an increase in mRNA levels. Neither MAR elements enhance gene expression stability during long-term culture. The combinations of SV40 promoter and MAR elements are the best for obtaining both high expression level and stability. The information presented here would be valuable to those developing vectors for generation of CHO cell lines with stable and high productivity.


Metabolic Engineering | 2010

A functional analysis of N-glycosylation-related genes on sialylation of recombinant erythropoietin in six commonly used mammalian cell lines.

Peiqing Zhang; Diana Lifen Tan; Desmond Heng; Tianhua Wang; Mariati; Yuansheng Yang; Zhiwei Song

Significant efforts have been made to improve the sialylation of recombinant glycoproteins with the aim of extending their in vivo circulation time. Here, we report a systematic functional analysis of 31 N-glycosylation-related genes on sialylation of recombinant EPO in six cell lines. BHK and CHO cells were found to sialylate recombinant EPO most effectively. None of the 31 genes, individually or in combination, was able to improve EPO sialylation in these cells. HEK293, Cos-7 and 3T3 cells showed intermediate sialylation capabilities, whereas NS0 cells sialylated recombinant EPO poorly. Overexpression of ST6GalI, ST3GalIII or ST3GalIV, but not ST3GalVI, was able to improve EPO sialylation in these four cell lines. qRT-PCR experiments revealed that ST3GalIII and ST3GalIV are indeed under expressed in HEK293, 3T3 and NS0 cells. Co-expression of upstream glycogenes failed to synergize with these sialyltransferases to further enhance sialylation, suggesting that the upstream glycogenes are all expressed at sufficient levels.


Journal of Biotechnology | 2010

Evaluating regulatory elements of human cytomegalovirus major immediate early gene for enhancing transgene expression levels in CHO K1 and HEK293 cells.

Mariati; Yi Kai Ng; Sheng-Hao Chao; Miranda G.S. Yap; Yuansheng Yang

The upstream regulatory sequence (URS), NF1 region, enhancer, promoter, 1st exon, and intron A of human cytomegalovirus major immediate early gene (hCMV MIE) are evaluated for enhancing transient and stable gene expression levels in two industrial cell lines, CHO K1 and HEK293 using firefly luciferase (Fluc) and erythropoietin (EPO). As compared to the control vector which only contains the enhancer and promoter (EP), vectors containing the 1st exon (EPE) and intron A (EPEI) enhance transient expression levels of the two proteins by approximately 2.5- to 4.3-fold in the two cell lines. Addition of NF1 and URS to EP (NEP and UNEP) or EPEI (NEPEI and UNEPEI) results in a lesser effect on the expression. In stable transfections, UNEPEI provides the highest expression level in CHO K1 cells, yielding approximately 4.0-fold increase in Fluc expression and 2.5-fold increase in EPO expression. In HEK293 cells, EPE is the best and enhances Fluc and EPO expression by more than 2.0-fold. Such information is valuable for the development of optimal vectors to enhance transient and stable production of recombinant proteins in CHO K1 and HEK293 cells.


PLOS ONE | 2013

An internal ribosome entry site (IRES) mutant library for tuning expression level of multiple genes in mammalian cells

Esther Y. C. Koh; Steven C. L. Ho; Mariati; Zhiwei Song; Xuezhi Bi; Muriel Bardor; Yuansheng Yang

A set of mutated Encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) elements with varying strengths is generated by mutating the translation initiation codons of 10th, 11th, and 12th AUG to non-AUG triplets. They are able to control the relative expression of multiple genes over a wide range in mammalian cells in both transient and stable transfections. The relative strength of each IRES mutant remains similar in different mammalian cell lines and is not gene specific. The expressed proteins have correct molecular weights. Optimization of light chain over heavy chain expression by these IRES mutants enhances monoclonal antibody expression level and quality in stable transfections. Uses of this set of IRES mutants can be extended to other applications such as synthetic biology, investigating interactions between proteins and its complexes, cell engineering, multi-subunit protein production, gene therapy, and reprogramming of somatic cells into stem cells.


Biotechnology Progress | 2014

Insertion of Core CpG Island Element into Human CMV Promoter for Enhancing Recombinant Protein Expression Stability in CHO Cells

Mariati; Jessna H. M. Yeo; Esther Y. C. Koh; Steven C. L. Ho; Yuansheng Yang

The human cytomegalovirus promoter (hCMV) is susceptible to gene silencing in CHO cells, most likely due to epigenetic events, such as DNA methylation and histone modifications. The core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene has been shown to prevent DNA methylation. A set of modified hCMV promoters was developed by inserting one or two copies of IE in either forward or reverse orientations either upstream of the hCMV enhancer, between the enhancer and core promoter (CP), or downstream of the CP. The modified hCMV with one copy of IE inserted between the enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability without compromising expression level when compared with the wild‐type (WT) hCMV. A third of 18 EGFP expressing clones generated using MR1 retained 70% of their starting expression level after 8 weeks of culture in the absence of selection pressure, while none of 18 WT hCMV generated clones had expression above 50%. MR1 also improved antibody expression stability of methotrexate (MTX) amplified CHO cell lines. Stably transfected pools generated using MR1 maintained 62% of their original monoclonal antibody titer after 8 weeks of culture in the absence of MTX, compared to only 37% for WT hCMV pools. Low levels of CpG methylation within both WT hCMV and MR1 were observed in all the analyzed cell lines and the methylation levels did not correlate to the expression stability, suggesting IE enhances expression stability by other mechanisms other than preventing methylation.


Journal of Biotechnology | 2013

Enhanced expression of codon optimized interferon gamma in CHO cells

Bevan Kai-Sheng Chung; Faraaz Noor Khan Yusufi; Mariati; Yuansheng Yang; Dong-Yup Lee

The human interferon-gamma (IFN-γ) is a potential drug candidate for treating various diseases due to its immunomodulatory properties. The efficient production of this protein can be achieved through a popular industrial host, Chinese hamster ovary (CHO) cells. However, recombinant expression of foreign proteins is typically suboptimal possibly due to the usage of non-native codon patterns within the coding sequence. Therefore, we demonstrated the application of a recently developed codon optimization approach to design synthetic IFN-γ coding sequences for enhanced heterologous expression in CHO cells. For codon optimization, earlier studies suggested to establish the target usage distribution pattern in terms of selected design parameters such as individual codon usage (ICU) and codon context (CC), mainly based on the hosts highly expressed genes. However, our RNA-Seq based transcriptome profiling indicated that the ICU and CC distribution patterns of different gene expression classes in CHO cell are relatively similar, unlike other microbial expression hosts, Escherichia coli and Saccharomyces cerevisiae. This finding was further corroborated through the in vivo expression of various ICU and CC optimized IFN-γ in CHO cells. Interestingly, the CC-optimized genes exhibited at least 13-fold increase in expression level compared to the wild-type IFN-γ while a maximum of 10-fold increase was observed for the ICU-optimized genes. Although design criteria based on individual codons, such as ICU, have been widely used for gene optimization, our experimental results suggested that codon context is relatively more effective parameter for improving recombinant IFN-γ expression in CHO cells.


Bioengineered bugs | 2014

Toward stable gene expression in CHO cells Preventing promoter silencing with core CpG island elements

Mariati; Esther Y. C. Koh; Jessna H. M. Yeo; Steven C. L. Ho; Yuansheng Yang

Maintaining high gene expression level during long-term culture is critical when producing therapeutic recombinant proteins using mammalian cells. Transcriptional silencing of promoters, most likely due to epigenetic events such as DNA methylation and histone modifications, is one of the major mechanisms causing production instability. Previous studies demonstrated that the core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene is effective to prevent DNA methylation. We generated one set of modified human cytomegalovirus (hCMV) promoters by insertion of one or two copies of IE in either forward or reverse orientations into different locations of the hCMV promoter. The modified hCMV with one copy of IE inserted between the hCMV enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability in CHO cells without comprising expression level when compared with the wild type hCMV. We also found that insertion of IE into a chimeric murine CMV (mCMV) enhancer and human elongation factor-1α core (hEF) promoter in reverse orientation did not enhance expression stability, indicating that the effect of IE on expression stability is possibly promoter specific.


Methods of Molecular Biology | 2012

Post-transcriptional Regulatory Elements for Enhancing Transient Gene Expression Levels in Mammalian Cells

Mariati; Steven C. L. Ho; Miranda G.S. Yap; Yuansheng Yang

Low yield from transient gene expression in mammalian cells limits its application to areas where large amount of proteins are needed. One effective approach to enhance transient gene expression levels is to use post-transcriptional regulatory elements (PTREs). We have evaluated the effect of five PTREs on the transient gene expression of three proteins in two cell lines. Most of the elements increased expression but exhibited cell-specific and gene-specific effects. The tripartite leader sequence of human adenovirus mRNA linked with a major late promoter enhancer gave the most universal and highest enhancement of gene expression levels. It increased the expression of all three proteins in HEK293 cells and two proteins in CHO K1 cells by 3.6- to 7.6-fold. Combinations of multiple PTREs increased protein expression as much as 10.5-fold.

Collaboration


Dive into the nan Mariati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge