Maribel Martinez
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maribel Martinez.
Annals of Neurology | 2003
Pau Pastor; Catherine M. Roe; Andrés Villegas; Gabriel Bedoya; Sumi Chakraverty; Gloria María Gallego García; Victoria Tirado; Joanne Norton; Silvia Ríos; Maribel Martinez; Kenneth S. Kosik; Francisco Lopera; Alison Goate
We previously have identified a large kindred from Colombia in which Alzheimers disease (AD) is caused by the E280A presenilin 1 (PS1) mutation. The objective of this study was to examine whether environmental and genetic factors are responsible for variation in the phenotypic expression of the E280A PS1 mutation. We genotyped coding and promoter polymorphisms of the APOE gene in carriers of the E280A PS1 mutation. Kaplan–Meier product‐limit and Cox proportional hazard models were used in the statistical analyses. DNA was available from 114 carriers of the E280A PS1 mutation, including 52 subjects with AD. APOE ε4 allele carriers were more likely to develop AD at an earlier age than subjects without the ε4 allele (hazard ratio, 2.07; 95% confidence interval, 1.07–3.99; p = 0.030). Subjects with low education were more likely to develop AD later than those with higher education (hazard ratio, 0.476; 95% confidence interval, 0.26–0.87). Low educational level was associated with rural residence (p < 0.001). Promoter APOE variants did not influence either the onset or the duration of the disease. This study is the first to our knowledge to demonstrate that genetic and environmental factors influence age of onset in a kindred with a familial AD mutation. Ann Neurol 2003
Journal of Neurochemistry | 2005
Emily S. Walker; Maribel Martinez; Anne L. Brunkan; Alison Goate
Gene knockout studies in mice suggest that presenilin 1 (PS1) is the major γ‐secretase and that it contributes disproportionately to amyloid β (Aβ) peptide generation from β‐amyloid precursor protein (APP), whereas PS2 plays a more minor role. Based on this and other observations we hypothesized that familial Alzheimers disease (FAD) mutations in PS2 would have a dramatic effect on function in order to have an observable effect on Aβ levels in the presence of normal PS1 alleles. Only four of the eight reported FAD mutations in PS2 have altered function in vitro suggesting that the other variants represent rare polymorphisms rather than disease‐causing mutations. In support of our hypothesis, the four verified PS2 FAD mutations cause substantial changes in the Aβ 42/40 ratio, comparable with PS1 mutations that cause very‐early‐onset FAD. Most of the PS2 mutations also cause a significant decrease in Aβ 40, APP C‐terminal fragment (CTF)γ and Notch intracellular domain (NICD) production suggesting that they are partial loss of function mutations. PS2 M239V, its PS1 homolog M233V, and other FAD mutations within transmembrane (TM) 5 of PS1 differentially affect CTFγ and NICD production suggesting that TM5 of PS are important for γ‐secretase cleavage of APP but not Notch.
Neurobiology of Disease | 2004
Silva Hećimović; Jun Wang; Georgia Dolios; Maribel Martinez; Rong Wang; Alison Goate
Understanding the molecular mechanism of beta-amyloid (Abeta) generation is crucial for Alzheimers disease pathogenesis as well as for normal APP function. The transmembrane domain (TM) of APP appears to undergo presenilin-dependent gamma-secretase cleavage at two topologically distinct sites: a site in the middle of the TM domain that is crucial for the generation of Abeta-peptides, and a site close to the cytoplasmic border (S3-like/epsilon site) of the TM domain that leads to production of the APP intracellular domain (CTFgamma/AICD). We demonstrate that, in contrast to the unique effect of familial Alzheimers disease (FAD) mutations in APP on Abeta42 production, some but not all FAD mutations also affect CTFgamma generation. Furthermore, changes in total CTFgamma levels do not correlate with either an increase or a decrease of any Abeta species, and inhibition of Abeta-peptide formation starting from position +1 (Abeta1-x) does not affect CTFgamma production. These results suggest that cleavage at the gamma40/42- and the S3-like sites can be dissociated, and that APP signaling and Abeta production are not tightly linked.
Addiction | 2014
Li-Shiun Chen; A. Joseph Bloom; Timothy B. Baker; Stevens S. Smith; Megan E. Piper; Maribel Martinez; Nancy L. Saccone; Dorothy K. Hatsukami; Alison Goate; Laura J. Bierut
BACKGROUND AND AIMS Evidence suggests that both the nicotinic receptor α5 subunit (CHRNA5) and Cytochrome P450 2A6 (CYP2A6) genotypes influence smoking cessation success and response to pharmacotherapy. We examine the effect of CYP2A6 genotype on smoking cessation success and response to cessation pharmacotherapy, and combine these effects with those of CHRNA5 genotypes. DESIGN Placebo-controlled randomized smoking cessation trial. SETTING Ambulatory care facility in Wisconsin, USA. PARTICIPANTS Smokers (n = 709) of European ancestry were randomized to placebo, bupropion, nicotine replacement therapy or combined bupropion and nicotine replacement therapy. MEASUREMENTS Survival analysis was used to model time to relapse using nicotine metabolism derived from CYP2A6 genotype-based estimates. Slow metabolism is defined as the lowest quartile of estimated metabolic function. FINDINGS CYP2A6-defined nicotine metabolic function moderated the effect of smoking cessation pharmacotherapy on smoking relapse over 90 days [hazard ratio (HR) = 2.81, 95% confidence interval (CI) = 1.32-5.99, P = 0.0075], with pharmacotherapy significantly slowing relapse in fast (HR = 0.39, 95% CI = 0.28-0.55, P = 1.97 × 10(-8)), but not slow metabolizers (HR = 1.09, 95% CI = 0.55-2.17, P = 0.80). Further, only the effect of nicotine replacement, and not bupropion, varies with CYP2A6-defined metabolic function. The effect of nicotine replacement on continuous abstinence is moderated by the combined genetic risks from CYP2A6 and CHRNA5 (Wald = 7.44, d.f. = 1, P = 0.0064). CONCLUSIONS Nicotine replacement therapy is effective among individuals with fast, but not slow, CYP2A6-defined nicotine metabolism. The effect of bupropion on relapse likelihood is unlikely to be affected by nicotine metabolism as estimated from CYP2A6 genotype. The variation in treatment responses among smokers with genes may guide future personalized smoking cessation interventions.
Molecular Psychiatry | 2015
Rahul S. Desikan; Andrew J. Schork; Yunpeng Wang; Aree Witoelar; Manu Sharma; Linda K. McEvoy; Dominic Holland; James B. Brewer; Chi-Hua Chen; Wes Thompson; Denise Harold; Julie Williams; Michael John Owen; Michael Conlon O'Donovan; Margaret A. Pericak-Vance; Richard Mayeux; Jonathan L. Haines; Lindsay A. Farrer; Gerard D. Schellenberg; Peter Heutink; Andrew Singleton; Alexis Brice; Nicholas W. Wood; John Hardy; Maribel Martinez; Seung-Hoan Choi; Anita L. DeStefano; Mohammad Arfan Ikram; Joshua C. Bis; Albert V. Smith
We investigated the genetic overlap between Alzheimer’s disease (AD) and Parkinson’s disease (PD). Using summary statistics (P-values) from large recent genome-wide association studies (GWAS) (total n=89 904 individuals), we sought to identify single nucleotide polymorphisms (SNPs) associating with both AD and PD. We found and replicated association of both AD and PD with the A allele of rs393152 within the extended MAPT region on chromosome 17 (meta analysis P-value across five independent AD cohorts=1.65 × 10−7). In independent datasets, we found a dose-dependent effect of the A allele of rs393152 on intra-cerebral MAPT transcript levels and volume loss within the entorhinal cortex and hippocampus. Our findings identify the tau-associated MAPT locus as a site of genetic overlap between AD and PD, and extending prior work, we show that the MAPT region increases risk of Alzheimer’s neurodegeneration.
Annals of the American Thoracic Society | 2014
A. Joseph Bloom; Sarah M. Hartz; Timothy B. Baker; Li-Shiun Chen; Megan E. Piper; Louis Fox; Maribel Martinez; Dorothy K. Hatsukami; Eric O. Johnson; Cathy C. Laurie; Nancy L. Saccone; Alison Goate; Laura J. Bierut
RATIONALE The CHRNA5-CHRNA3-CHRNB4 locus is associated with self-reported smoking behavior and also harbors the strongest genetic associations with chronic obstructive pulmonary disease (COPD) and lung cancer. Because the associations with lung disease remain after adjustment for self-reported smoking behaviors, it has been asserted that CHRNA5-CHRNA3-CHRNB4 variants increase COPD and lung cancer susceptibility independently of their effects on smoking. OBJECTIVES To compare the genetic associations of exhaled carbon monoxide (CO), a biomarker of current cigarette exposure, with self-reported smoking behaviors. METHODS A total of 1,521 European American and 247 African American current smokers recruited into smoking cessation studies were assessed for CO at intake before smoking cessation. DNA samples were genotyped using the Illumina Omni2.5 microarray. Genetic associations with CO and smoking behaviors (cigarettes smoked per day, Fagerstrom test for nicotine dependence) were studied. MEASUREMENTS AND MAIN RESULTS Variants in the CHRNA5-CHRNA3-CHRNB4 locus, including rs16969968, a nonsynonymous variant in CHRNA5, are genomewide association study-significantly associated with CO (β = 2.66; 95% confidence interval [CI], 1.74-3.58; P = 1.65 × 10(-8)), and this association remains strong after adjusting for smoking behavior (β = 2.18; 95% CI, 1.32-3.04; P = 7.47 × 10(-7)). The correlation between CO and cigarettes per day is statistically significantly lower (z = 3.43; P = 6.07 × 10(-4)) in African Americans (r = 0.14; 95% CI, 0.02-0.26; P = 0.003) than in European-Americans (r = 0.36; 95% CI, 0.31-0.40; P = 0.0001). CONCLUSIONS Exhaled CO, a biomarker that is simple to measure, captures aspects of cigarette smoke exposure in current smokers beyond the number of cigarettes smoked per day. Behavioral measures of smoking are therefore insufficient indices of cigarette smoke exposure, suggesting that genetic associations with COPD or lung cancer that persist after adjusting for self-reported smoking behavior may still reflect genetic effects on smoking exposure.
Human Molecular Genetics | 2012
A. Joseph Bloom; Oscar Harari; Maribel Martinez; Pamela A. F. Madden; Nicholas G. Martin; Grant W. Montgomery; John P. Rice; Sharon E. Murphy; Laura J. Bierut; Alison Goate
This study demonstrates a novel approach to test associations between highly heterogeneous genetic loci and complex phenotypes. Previous investigations of the relationship between Cytochrome P450 2A6 (CYP2A6) genotype and smoking phenotypes made comparisons by dividing subjects into broad categories based on assumptions that simplify the range of function of different CYP2A6 alleles, their numerous possible diplotype combinations and non-additive allele effects. A predictive model that translates CYP2A6 diplotype into a single continuous variable was previously derived from an in vivo metabolism experiment in 189 European Americans. Here, we apply this model to assess associations between genotype, inferred nicotine metabolism and smoking behaviors in larger samples without direct nicotine metabolism measurements. CYP2A6 genotype is not associated with nicotine dependence, as defined by the Fagerström Test of Nicotine Dependence, demonstrating that cigarettes smoked per day (CPD) and nicotine dependence have distinct genetic correlates. The predicted metric is significantly associated with CPD among African Americans and European American dependent smokers. Individual slow metabolizing genotypes are associated with lower CPD, but the predicted metric is the best predictor of CPD. Furthermore, optimizing the predictive model by including additional CYP2A6 alleles improves the fit of the model in an independent data set and provides a novel method of predicting the functional impact of alleles without direct metabolism measurements. Lastly, comprehensive genotyping and in vivo metabolism data are used to demonstrate that genome-wide significant associations between CPD and single nucleotide polymorphisms are the result of synthetic associations.
Journal of Neurochemistry | 2005
Anne L. Brunkan; Maribel Martinez; Jun Wang; Emily S. Walker; Dirk Beher; Mark S. Shearman; Alison Goate
Presenilins (PS) are thought to contain the active site for presenilinase endoproteolysis of PS and γ‐secretase cleavage of substrates. The structural requirements for PS incorporation into the γ‐secretase enzyme complex, complex stability and maturation, and appropriate presenilinase and γ‐secretase activity are poorly understood. We used rescue assays to identify sequences in transmembrane domain one (TM1) of PS1 required to support presenilinase and γ‐secretase activities. Swap mutations identified an N‐terminal TM1 domain that is important for γ‐secretase activity only and a C‐terminal TM1 domain that is essential for both presenilinase and γ‐secretase activities. Exchange of residues 95–98 of PS1 (sw95–98) completely abolishes both activities while the familial Alzheimers disease mutation V96F significantly inhibits both activities. Reversion of residue 96 back to valine in the sw95–98 mutant rescues PS function, identifying V96 as the critical residue in this region. The TM1 mutants do not bind to an aspartyl protease transition state analog γ‐secretase inhibitor, indicating a conformational change induced by the mutations that abrogates catalytic activity. TM1 mutant PS1 molecules retain the ability to interact with γ‐secretase substrates and γ‐secretase complex members, although Nicastrin stability is decreased by the presence of these mutants. γ‐Secretase complexes that contain V96F mutant PS1 molecules display a partial loss of function for γ‐secretase that alters the ratio of amyloid‐β peptide species produced, leading to the amyloid‐β peptide aggregation that causes familial Alzheimers disease.
Pharmacogenetics and Genomics | 2013
A. Joseph Bloom; Sharon E. Murphy; Maribel Martinez; Linda B. von Weymarn; Laura J. Bierut; Alison Goate
Background Flavin-containing monooxygenases (FMO) catalyze the metabolism of nucleophilic heteroatom-containing drugs and xenobiotics, including nicotine. Rare mutations in FMO3 are responsible for defective N-oxidation of dietary trimethylamine leading to trimethylaminuria, and common genetic variation in FMO3 has been linked to interindividual variability in metabolic function that may be substrate specific. Methods A genetic model of CYP2A6 function is used as a covariate to reveal functional polymorphism in FMO3 that indirectly influences the ratio of deuterated nicotine metabolized to cotinine following oral administration. The association is tested between FMO3 haplotype and cigarette consumption in a set of nicotine-dependent smokers. Results FMO3 haplotype, based on all common coding variants in Europeans, significantly predicts nicotine metabolism and accounts for ∼2% of variance in the apparent percent of nicotine metabolized to cotinine. The metabolic ratio is not associated with FMO2 haplotype or an FMO1 expression quantitative trait locus. Cross-validation demonstrates calculated FMO3 haplotype parameters to be robust and significantly improve the predictive nicotine metabolism model over CYP2A6 genotype alone. Functional classes of FMO3 haplotypes, as determined by their influence on nicotine metabolism to cotinine, are also significantly associated with cigarettes per day in nicotine-dependent European Americans (n=1025, P=0.04), and significantly interact (P=0.016) with CYP2A6 genotype to predict cigarettes per day. Conclusion These findings suggest that common polymorphisms in FMO3 influence nicotine clearance and that these genetic variants in turn influence cigarette consumption.
Pharmacogenetics and Genomics | 2013
A. Joseph Bloom; Oscar Harari; Maribel Martinez; Xiaochun Zhang; Sandra A. McDonald; Sharon E. Murphy; Alison Goate
A synonymous variant in the first exon of CYP2A6, rs1137115 (51G>A), defines the common reference allele CYP2A6*1A, and is associated with lower mRNA expression and slower in-vivo nicotine metabolism. Another common allele, CYP2A6*14, differs from CYP2A6*1A by a single variant, rs28399435 (86G>A, S29N). However, CYP2A6*14 shows in-vivo activity comparable with that of full-function alleles, and significantly higher than CYP2A6*1A. rs1137115A is predicted to create an exonic splicing suppressor site overlapping an exonic splicing enhancer (ESE) site in the first exon of CYP2A6, whereas rs28399435A is predicted to strengthen another adjacent ESE, potentially compensating for rs1137115A. Using an allelic expression assay to assess cDNAs produced from rs1137115 heterozygous liver biopsy samples, lower expression of the CYP2A6*1A allele is confirmed while CYP2A6*14 expression is found to be indistinguishable from that of rs1137115G alleles. Quantitative PCR assays to determine the relative abundance of spliced and unspliced or partially spliced CYP2A6 mRNAs in liver biopsy samples show that *1A/*1A homozygotes have a significantly lower ratio, due to both a reduction in spliced forms and an increase in unspliced or partially spliced CYP2A6. These results show the importance of common genetic variants that effect exonic splicing suppressor and ESEs to explain human variation regarding clinically-relevant phenotypes.