Marie-Christine Zdora
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie-Christine Zdora.
Physical Review Letters | 2017
Marie-Christine Zdora; Pierre Thibault; Tunhe Zhou; Frieder J. Koch; Jenny Romell; Simone Sala; Christoph Rau; Irene Zanette
We present a method for x-ray phase-contrast imaging and metrology applications based on the sample-induced modulation and subsequent computational demodulation of a random or periodic reference interference pattern. The proposed unified modulated pattern analysis (UMPA) technique is a versatile approach and allows tuning of signal sensitivity, spatial resolution, and scan time. We characterize the method and demonstrate its potential for high-sensitivity, quantitative phase imaging, and metrology to overcome the limitations of existing methods.
Biomedical Optics Express | 2017
Marie-Christine Zdora; Joan Vila-Comamala; Georg Schulz; Anna Khimchenko; Alexander Hipp; Andrew C. Cook; Daniel Dilg; Christian David; C. Grünzweig; Christoph Rau; Pierre Thibault; Irene Zanette
The high-throughput 3D visualisation of biological specimens is essential for studying diseases and developmental disorders. It requires imaging methods that deliver high-contrast, high-resolution volumetric information at short sample preparation and acquisition times. Here we show that X-ray phase-contrast tomography using a single grating can provide a powerful alternative to commonly employed techniques, such as high-resolution episcopic microscopy (HREM). We present the phase tomography of a mouse embryo in paraffin obtained with an X-ray single-grating interferometer at I13-2 Beamline at Diamond Light Source and discuss the results in comparison with HREM measurements. The excellent contrast and quantitative density information achieved non-destructively and without staining using a simple, robust setup make X-ray single-grating interferometry an optimum candidate for high-throughput imaging of biological specimens as an alternative for existing methods like HREM.
Journal of Applied Physics | 2015
Marie-Christine Zdora; Pierre Thibault; Franz Pfeiffer; Irene Zanette
Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by speckle tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources.
Optics Letters | 2016
Tunhe Zhou; Marie-Christine Zdora; Irene Zanette; Jenny Romell; Hans M. Hertz; Anna Burvall
Speckle-based x-ray phase-contrast imaging has drawn increasing interest in recent years as a simple, multimodal, cost-efficient, and laboratory-source adaptable method. We investigate its noise properties to help further optimization on the method and further comparison with other phase-contrast methods. An analytical model for assessing noise in a differential phase signal is adapted from studies on the digital image correlation technique in experimental mechanics and is supported by simulations and experiments. The model indicates that the noise of the differential phase signal from speckle-based imaging has a behavior similar to that of the grating-based method.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Irene Zanette; Marie-Christine Zdora; Tunhe Zhou; Anna Burvall; Daniel H. Larsson; Pierre Thibault; Hans M. Hertz; Franz Pfeiffer
Significance We present X-ray speckle tracking tomography, a simple, robust, and versatile method to obtain simultaneously phase and absorption tomograms of the sample at the micrometer scale with a laboratory X-ray source. The method is based on correlation of near-field speckles and yields quantitative measurements of the full X-ray refractive index of the object with high sensitivity. X-ray speckle tracking tomography broadens the capabilities of X-ray imaging at laboratory sources with strong potential in materials and life sciences. Nondestructive microscale investigation of objects is an invaluable tool in life and materials sciences. Currently, such investigation is mainly performed with X-ray laboratory systems, which are based on absorption-contrast imaging and cannot access the information carried by the phase of the X-ray waves. The phase signal is, nevertheless, of great value in X-ray imaging as it is complementary to the absorption information and in general more sensitive to visualize features with small density differences. Synchrotron facilities, which deliver a beam of high brilliance and high coherence, provide the ideal condition to develop such advanced phase-sensitive methods, but their access is limited. Here we show how a small modification of a laboratory setup yields simultaneously quantitative and 3D absorption and phase images of the object. This single-shot method is based on correlation of X-ray near-field speckles and represents a significant broadening of the capabilities of laboratory-based X-ray tomography.
Optics Express | 2018
Marie-Christine Zdora; Irene Zanette; Tunhe Zhou; Frieder J. Koch; Jenny Romell; Simone Sala; Yasuo Ohishi; Naohisa Hirao; Christoph Rau; Pierre Thibault
The current advances in new generation X-ray sources are calling for the development and improvement of high-performance optics. Techniques for high-sensitivity phase sensing and wavefront characterisation, preferably performed at-wavelength, are increasingly required for quality control, optimisation and development of such devices. We here show that the recently proposed unified modulated pattern analysis (UMPA) can be used for these purposes. We characterised two polymer X-ray refractive lenses and quantified the effect of beam damage and shape errors on their refractive properties. Measurements were performed with two different setups for UMPA and validated with conventional X-ray grating interferometry. Due to its adaptability to different setups, the ease of implementation and cost-effectiveness, we expect UMPA to find applications for high-throughput quantitative optics characterisation and wavefront sensing.
Journal of Imaging | 2018
Marie-Christine Zdora
In the past few years, X-ray phase-contrast and dark-field imaging have evolved to be invaluable tools for non-destructive sample visualisation, delivering information inaccessible by conventional absorption imaging. X-ray phase-sensing techniques are furthermore increasingly used for at-wavelength metrology and optics characterisation. One of the latest additions to the group of differential phase-contrast methods is the X-ray speckle-based technique. It has drawn significant attention due to its simple and flexible experimental arrangement, cost-effectiveness and multimodal character, amongst others. Since its first demonstration at highly brilliant synchrotron sources, the method has seen rapid development, including the translation to polychromatic laboratory sources and extension to higher-energy X-rays. Recently, different advanced acquisition schemes have been proposed to tackle some of the main limitations of previous implementations. Current applications of the speckle-based method range from optics characterisation and wavefront measurement to biomedical imaging and materials science. This review provides an overview of the state of the art of the X-ray speckle-based technique. Its basic principles and different experimental implementations as well as the the latest advances and applications are illustrated. In the end, an outlook for anticipated future developments of this promising technique is given.
Journal of Physics: Conference Series | 2017
Marie-Christine Zdora; Pierre Thibault; Christoph Rau; Irene Zanette
We present a study on the influence of different scan and reconstruction parameters on the image quality of the differential phase signals obtained from speckle-based X-ray phase-contrast imaging measurements in single-shot as well as 2D and 1D speckle-stepping modes. In particular, the effects of the analysis window size and the number of diffuser steps on the spatial resolution and signal sensitivity of images of a phantom sample are investigated and discussed. It is shown that the trade-off between spatial resolution, scan time and simplicity of the setup has to carefully be addressed for each specific experiment.
Proceedings of SPIE | 2016
Georg Schulz; Christian Götz; Hans Deyhle; Magdalena Müller-Gerbl; Irene Zanette; Marie-Christine Zdora; Anna Khimchenko; Peter Thalmann; Alexander Rack; Bert Müller
Among the clinically relevant imaging techniques, computed tomography (CT) reaches the best spatial resolution. Sub-millimeter voxel sizes are regularly obtained. For investigations on true micrometer level lab-based μCT has become gold standard. The aim of the present study is the hierarchical investigation of a human knee post mortem using hard X-ray μCT. After the visualization of the entire knee using a clinical CT with a spatial resolution on the sub-millimeter range, a hierarchical imaging study was performed using a laboratory μCT system nanotom m. Due to the size of the whole knee the pixel length could not be reduced below 65 μm. These first two data sets were directly compared after a rigid registration using a cross-correlation algorithm. The μCT data set allowed an investigation of the trabecular structures of the bones. The further reduction of the pixel length down to 25 μm could be achieved by removing the skin and soft tissues and measuring the tibia and the femur separately. True micrometer resolution could be achieved after extracting cylinders of several millimeters diameters from the two bones. The high resolution scans revealed the mineralized cartilage zone including the tide mark line as well as individual calcified chondrocytes. The visualization of soft tissues including cartilage, was arranged by X-ray grating interferometry (XGI) at ESRF and Diamond Light Source. Whereas the high-energy measurements at ESRF allowed the simultaneous visualization of soft and hard tissues, the low-energy results from Diamond Light Source made individual chondrocytes within the cartilage visual.
Developments in X-Ray Tomography XI | 2017
Christoph Rau; A. Bodey; M. Storm; S. Cipiccia; S. Marathe; Marie-Christine Zdora; I. Zanette; U. Wagner; D. Batey; X. Shi
The Diamond Beamline I13L is dedicated to imaging on the micro- and nano-lengthsale, operating in the energy range between 6 and 30keV. For this purpose two independently operating branchlines and endstations have been built. The imaging branch is fully operational for micro-tomography and in-line phase contrast imaging with micrometre resolution. Grating interferometry is currently implemented, adding the capability of measuring phase and small-angle information. For tomography with increased resolution a full-field microscope providing 50nm spatial resolution with a field of view of 100μm is being tested. The instrument provides a large working distance between optics and sample to adapt a wide range of customised sample environments. On the coherence branch coherent diffraction imaging techniques such as ptychography, coherent X-ray diffraction (CXRD) are currently developed for three dimensional imaging with the highest resolution. The imaging branch is operated in collaboration with Manchester University, called therefore the Diamond-Manchester Branchline. The scientific applications cover a large area including bio-medicine, materials science, chemistry geology and more. The present paper provides an overview about the current status of the beamline and the science addressed.