Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie-Claude Mathieu is active.

Publication


Featured researches published by Marie-Claude Mathieu.


Journal of Pharmacology and Experimental Therapeutics | 2006

Prostacyclin Antagonism Reduces Pain and Inflammation in Rodent Models of Hyperalgesia and Chronic Arthritis

Anne-Marie Pulichino; Steve Rowland; Tom Wu; Patsy Clark; Daigen Xu; Marie-Claude Mathieu; Denis Riendeau; Laurent P. Audoly

The inhibition of prostaglandin (PG) synthesis is at the center of current anti-inflammatory therapies. Because cyclooxygenase-2 (COX-2) inhibitors and nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit the formation of multiple PGs, there is currently a strong focus on characterizing the role of the different PGs in the inflammation process and development of arthritis. Evidence to date suggests that both PGE2 and PGI2 act as mediators of pain and inflammation. Most of the data indicating a role for PGI2 in this context have been generated in animal models of acute pain. Herein, we describe the role of PGI2 in models of osteoarthritis (OA) and rheumatoid arthritis using a highly selective PGI2 receptor (IP, Ptgir) antagonist and IP receptor-deficient mice. In the rat OA model using monoiodoacetate injection into the knee joint, the IP antagonist reduced pain with an efficacy approaching that of the NSAID diclofenac. In a chronic model of inflammatory arthritis, collagen-antibody induced arthritis model in mice, IP receptor-deficient mice displayed a 91% reduction in arthritis score. Interestingly, pretreatment with the IP [N-[4-(imidazolidin-2-ylideneamino)-benzyl]-4-methoxy-benzamide] antagonist in this model also caused a significant reduction of the symptoms, whereas administration of the compound after the initiation of arthritis had no detectable effect. Our data indicate that, in addition to its role in acute inflammation, PGI2 is involved in the development of chronic inflammation. The results also suggest that the inhibition of PGI2 synthesis by NSAIDs and COX-2 inhibitors, in addition to that of PGE2, contributes to their efficacy in treating the signs of arthritis.


Journal of Biological Chemistry | 2006

Structure-Function Relationships in the Neuropeptide S Receptor MOLECULAR CONSEQUENCES OF THE ASTHMA-ASSOCIATED MUTATION N107I

Virginie Bernier; Rino Stocco; Michael J. Bogusky; Joseph G. Joyce; Christine Parachoniak; Karl Grenier; Michael Arget; Marie-Claude Mathieu; Gary P. O'Neill; Deborah Slipetz; Michael A. Crackower; Christopher M. Tan; Alex G. Therien

Neuropeptide S (NPS) and its receptor (NPSR) are thought to have a role in asthma pathogenesis; a number of single nucleotide polymorphisms within NPSR have been shown to be associated with an increased prevalance of asthma. One such single nucleotide polymorphism leads to the missense mutation N107I, which results in an increase in the potency of NPS for NPSR. To gain insight into structure-function relationships within NPS and NPSR, we first carried out a limited structural characterization of NPS and subjected the peptide to extensive mutagenesis studies. Our results show that the NH2-terminal third of NPS, in particular residues Phe-2, Arg-3, Asn-4, and Val-6, are necessary and sufficient for activation of NPSR. Furthermore, part of a nascent helix within the peptide, spanning residues 5 through 13, acts as a regulatory region that inhibits receptor activation. Notably, this inhibition is absent in the asthma-linked N107I variant of NPSR, suggesting that residue 107 interacts with the aforementioned regulatory region of NPS. Whereas this interaction may be at the root of the increase in potency associated with the N107I variant, we show here that the mutation also causes an increase in cell-surface expression of the mutant receptor, leading to a concomitant increase in the maximal efficacy (Emax) of NPS. Our results identify the key residues of NPS involved in NPSR activation and suggest a molecular basis for the functional effects of the N107I mutation and for its putative pathophysiological link with asthma.


Journal of Pharmacology and Experimental Therapeutics | 2008

MF498 [N-{[4-(5,9-Diethoxy-6-oxo-6,8-dihydro-7H-pyrrolo[3,4-g]quinolin-7-yl)-3-methylbenzyl]sulfonyl}-2-(2-methoxyphenyl)acetamide], a Selective E Prostanoid Receptor 4 Antagonist, Relieves Joint Inflammation and Pain in Rodent Models of Rheumatoid and Osteoarthritis

Patsy Clark; Steven E. Rowland; Danielle Denis; Marie-Claude Mathieu; Rino Stocco; Hugo Poirier; Jason Burch; Yongxin Han; Laurent Audoly; Alex G. Therien; Daigen Xu

Previous evidence has implicated E prostanoid receptor 4 (EP4) in mechanical hyperalgesia induced by subplantar inflammation. However, its role in chronic arthritis remains to be further defined because previous attempts have generated two conflicting lines of evidence, with one showing a marked reduction of arthritis induced by a collagen antibody in mice lacking EP4, but not EP1-EP3, and the other showing no impact of EP4 antagonism on arthritis induced by collagen. Here, we assessed the effect of a novel and selective EP4 antagonist MF498 [N-{[4-(5,9-diethoxy-6-oxo-6,8-dihydro-7H-pyrrolo[3,4-g]quinolin-7-yl)-3-methylbenzyl]sulfonyl}-2-(2-methoxyphenyl)acetamide] on inflammation in adjuvant-induced arthritis (AIA), a rat model for rheumatoid arthritis (RA), and joint pain in a guinea pig model of iodoacetate-induced osteoarthritis (OA). In the AIA model, MF498, but not the antagonist for EP1, MF266-1 [1-(5-{3-[2-(benzyloxy)-5-chlorophenyl]-2-thienyl}pyridin-3-yl)-2,2,2-trifluoroethane-1,1-diol] or EP3 MF266-3 [(2E)-N-[(5-bromo-2-methoxyphenyl)sulfonyl]-3-[5-chloro-2-(2-naphthylmethyl)phenyl]acrylamide], inhibited inflammation, with a similar efficacy as a selective cyclooxygenase 2 (COX-2) inhibitor MF-tricyclic. In addition, MF498 was as effective as an nonsteroidal anti-inflammatory drug, diclofenac, or a selective microsomal prostaglandin E synthase-1 inhibitor, MF63 [2-(6-chloro-1H-phenanthro[9,10-d]imidazol-2-yl)isophthalonitrile], in relieving OA-like pain in guinea pigs. When tested in rat models of gastrointestinal toxicity, the EP4 antagonist was well tolerated, causing no mucosal leakage or erosions. Lastly, we evaluated the renal effect of MF498 in a furosemide-induced diuresis model and demonstrated that the compound displayed a similar renal effect as MF-tricyclic [3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone], reducing furosemide-induced natriuresis by ∼50%. These results not only suggest that EP4 is the major EP receptor in both RA and OA but also provide a proof of principle to the concept that antagonism of EP4 may be useful for treatment of arthritis.


Bioorganic & Medicinal Chemistry Letters | 2003

Discovery of a potent and selective agonist of the prostaglandin EP4 receptor

Xavier Billot; Anne Chateauneuf; Nathalie Chauret; Danielle Denis; Gillian Greig; Marie-Claude Mathieu; Kathleen M. Metters; Deborah Slipetz; Robert N. Young

Analogues of PGE(2) wherein the hydroxycyclopentanone ring has been replaced by a lactam have been prepared and evaluated as ligands for the EP(4) receptor. An optimized compound (19a) shows high potency and agonist efficacy at the EP(4) receptor and is highly selective over the other seven known prostaglandin receptors.


Journal of Pharmacology and Experimental Therapeutics | 2008

MF498, a selective EP4 antagonist, relieves joint inflammation and pain in rodent models of rheumatoid and osteoarthritis

Patsy Clark; Steven E. Rowland; Danielle Denis; Marie-Claude Mathieu; Rino Stocco; Hugo Poirier; Jason Burch; Yongxin Han; Laurent Audoly; Alex G. Therien; Daigen Xu

Previous evidence has implicated E prostanoid receptor 4 (EP4) in mechanical hyperalgesia induced by subplantar inflammation. However, its role in chronic arthritis remains to be further defined because previous attempts have generated two conflicting lines of evidence, with one showing a marked reduction of arthritis induced by a collagen antibody in mice lacking EP4, but not EP1-EP3, and the other showing no impact of EP4 antagonism on arthritis induced by collagen. Here, we assessed the effect of a novel and selective EP4 antagonist MF498 [N-{[4-(5,9-diethoxy-6-oxo-6,8-dihydro-7H-pyrrolo[3,4-g]quinolin-7-yl)-3-methylbenzyl]sulfonyl}-2-(2-methoxyphenyl)acetamide] on inflammation in adjuvant-induced arthritis (AIA), a rat model for rheumatoid arthritis (RA), and joint pain in a guinea pig model of iodoacetate-induced osteoarthritis (OA). In the AIA model, MF498, but not the antagonist for EP1, MF266-1 [1-(5-{3-[2-(benzyloxy)-5-chlorophenyl]-2-thienyl}pyridin-3-yl)-2,2,2-trifluoroethane-1,1-diol] or EP3 MF266-3 [(2E)-N-[(5-bromo-2-methoxyphenyl)sulfonyl]-3-[5-chloro-2-(2-naphthylmethyl)phenyl]acrylamide], inhibited inflammation, with a similar efficacy as a selective cyclooxygenase 2 (COX-2) inhibitor MF-tricyclic. In addition, MF498 was as effective as an nonsteroidal anti-inflammatory drug, diclofenac, or a selective microsomal prostaglandin E synthase-1 inhibitor, MF63 [2-(6-chloro-1H-phenanthro[9,10-d]imidazol-2-yl)isophthalonitrile], in relieving OA-like pain in guinea pigs. When tested in rat models of gastrointestinal toxicity, the EP4 antagonist was well tolerated, causing no mucosal leakage or erosions. Lastly, we evaluated the renal effect of MF498 in a furosemide-induced diuresis model and demonstrated that the compound displayed a similar renal effect as MF-tricyclic [3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone], reducing furosemide-induced natriuresis by ∼50%. These results not only suggest that EP4 is the major EP receptor in both RA and OA but also provide a proof of principle to the concept that antagonism of EP4 may be useful for treatment of arthritis.


American Journal of Respiratory Cell and Molecular Biology | 2008

Adenovirus IL-13-induced airway disease in mice: a corticosteroid-resistant model of severe asthma.

Alex G. Therien; Virginie Bernier; Sean Weicker; Paul Tawa; Jean-Pierre Falgueyret; Marie-Claude Mathieu; Jeanne Honsberger; Véronique Pomerleau; Annette Robichaud; Rino Stocco; Lynn Dufresne; Hani Houshyar; Josiane Lafleur; Gary P. O'Neill; Deborah Slipetz; Christopher M. Tan

Interleukin 13 (IL-13) is considered to be a key driver of the development of airway allergic inflammation and remodeling leading to airway hyperresponsiveness (AHR). How precisely IL-13 leads to the development of airway inflammation, AHR, and mucus production is not fully understood. In order to identify key mediators downstream of IL-13, we administered adenovirus IL-13 to specifically induce IL-13-dependent inflammation in the lungs of mice. This approach was shown to induce cardinal features of lung disease, specifically airway inflammation, elevated cytokines, AHR, and mucus secretion. Notably, the model is resistant to corticosteroid treatment and is characterized by marked neutrophilia, two hallmarks of more severe forms of asthma. To identify IL-13-dependent mediators, we performed a limited-scale two-dimensional SDS-PAGE proteomic analysis and identified proteins significantly modulated in this model. Intriguingly, several identified proteins were unique to this model, whereas others correlated with those modulated in a mouse ovalbumin-induced pulmonary inflammation model. We corroborated this approach by illustrating that proteomic analysis can identify known pathways/mediators downstream of IL-13. Thus, we have characterized a murine adenovirus IL-13 lung model that recapitulates specific disease traits observed in human asthma, and have exploited this model to identify effectors downstream of IL-13. Collectively, these findings will enable a broader appreciation of IL-13 and its impact on disease pathways in the lung.


Bioorganic & Medicinal Chemistry Letters | 2008

Identification of prostaglandin D2 receptor antagonists based on a tetrahydropyridoindole scaffold.

Christian Beaulieu; Daniel Guay; Zhaoyin Wang; Yves Leblanc; Patrick Roy; Claude Dufresne; Robert Zamboni; Carl Berthelette; Stephen Day; Nancy N. Tsou; Danielle Denis; Gillian Greig; Marie-Claude Mathieu; Gary O’Neill

A new series of indole-based antagonists of the PGD(2) receptor subtype 1 (DP1 receptor) was identified and the progress of the structure-activity relationship study to the identification of potent and selective antagonists is presented. Selective DP1 antagonists with high potency and selectivity were prepared. Of particular interest is the DP1 antagonist 26 with a K(i) value of 1 nM for the DP1 receptor and an IC(50) value of 4.6 nM in a DP1 functional assay for the inhibition of the PGD(2) induced cAMP production in platelet rich plasma (PRP).


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of 4-[1-[([1-[4-(trifluoromethyl)benzyl]-1H-indol-7-yl]carbonyl)amino]cyclopropyl]benzoic acid (MF-766), a highly potent and selective EP4 antagonist for treating inflammatory pain.

John Colucci; Michael Boyd; Carl Berthelette; Jean-François Chiasson; Zhaoyin Wang; Yves Ducharme; Rick Friesen; Mark Wrona; Jean-François Lévesque; Danielle Denis; Marie-Claude Mathieu; Rino Stocco; Alex G. Therien; Patsy Clarke; Steve Rowland; Daigen Xu; Yongxin Han

The discovery of a highly potent and selective EP(4) antagonist MF-766 is discussed. This N-benzyl indole derivative exhibits good pharmacokinetic profile and unprecedented in vivo potency in the rat AIA model.


Respiratory Research | 2012

Gene expression profiling following NRF2 and KEAP1 siRNA knockdown in human lung fibroblasts identifies CCL11/Eotaxin-1 as a novel NRF2 regulated gene

Jimmy Fourtounis; I-Ming Wang; Marie-Claude Mathieu; David Claveau; Tenneille Loo; Aimee L. Jackson; Mette A Peters; Alex G. Therien; Yves Boie; Michael A. Crackower

BackgroundOxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system.MethodsNormal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools.ResultsAn anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts.ConclusionsThese data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.


European Journal of Immunology | 2008

Mutual antagonistic relationship between prostaglandin E2 and IFN-γ: Implications for rheumatoid arthritis

Marie-Claude Mathieu; Simon Lord‐Dufour; Virginie Bernier; Yves Boie; Jason Burch; Patsy Clark; Danielle Denis; Yongxin Han; James R. Mortimer; Alex G. Therien

Prostaglandin E2 (PGE2) is a major mediator of inflammation and is present at high concentrations in the synovial fluid of rheumatoid arthritis (RA) patients. PGE2, acting through the EP4 receptor, has both pro‐ and anti‐inflammatory roles in vivo. To shed light on this dual role of PGE2, we investigated its effects in whole blood and in primary human fibroblast‐like synoviocytes (FLS). Gene expression analysis in human leukocytes, confirmed at the protein level, revealed an EP4‐dependent inhibition of the expression of genes involved in the IFN‐γ‐activation pathway, including IFN‐γ itself. This effect of the PGE2/EP4 axis on IFN‐γ is a reciprocal phenomenon since IFN‐γ blocks PGE2 release and blocks EP receptor expression. The mutually antagonistic relationship between IFN‐γ and PGE2 extends to downstream cytokine and chemokine release; PGE2 counters the effects of IFN‐γ, on the release of IP‐10, IL‐8, TNF‐α and IL‐1β. To gain further insight into IFN‐γ‐mediated cellular events in RA, we assessed the effects of IFN‐γ on gene expression in FLS. We observed an IFN‐γ‐dependent up‐regulation of macrophage‐attracting chemokines, and down‐regulation of metalloprotease expression. These results suggest the existence of a mutually antagonistic relationship between PGE2 and IFN‐γ, which may represent a fundamental mechanism of immune control in diseases such as RA.

Collaboration


Dive into the Marie-Claude Mathieu's collaboration.

Researchain Logo
Decentralizing Knowledge