Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose C. Florez is active.

Publication


Featured researches published by Jose C. Florez.


Nature | 2016

Analysis of protein-coding genetic variation in 60,706 humans

Monkol Lek; Konrad J. Karczewski; Eric Vallabh Minikel; Kaitlin E. Samocha; Eric Banks; Timothy Fennell; Anne H. O’Donnell-Luria; James S. Ware; Andrew Hill; Beryl B. Cummings; Taru Tukiainen; Daniel P. Birnbaum; Jack A. Kosmicki; Laramie Duncan; Karol Estrada; Fengmei Zhao; James Zou; Emma Pierce-Hoffman; Joanne Berghout; David Neil Cooper; Nicole Deflaux; Mark A. DePristo; Ron Do; Jason Flannick; Menachem Fromer; Laura Gauthier; Jackie Goldstein; Namrata Gupta; Daniel P. Howrigan; Adam Kiezun

Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human ‘knockout’ variants in protein-coding genes.


Science | 2007

Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels

Richa Saxena; Benjamin F. Voight; Valeriya Lyssenko; Noël P. Burtt; Paul I. W. de Bakker; Hong Chen; Jeffrey J. Roix; Sekar Kathiresan; Joel N. Hirschhorn; Mark J. Daly; Thomas Edward Hughes; Leif Groop; David Altshuler; Peter Almgren; Jose C. Florez; Joanne M. Meyer; Kristin Ardlie; Kristina Bengtsson Boström; Bo Isomaa; Guillaume Lettre; Ulf Lindblad; Helen N. Lyon; Olle Melander; Christopher Newton-Cheh; Peter Nilsson; Marju Orho-Melander; Lennart Råstam; Elizabeth K. Speliotes; Marja-Riitta Taskinen; Tiinamaija Tuomi

New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D), we identified and confirmed three loci associated with T2D—in a noncoding region near CDKN2A and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1—and replicated associations near HHEX and in SLC30A8 found by a recent whole-genome association study. We identified and confirmed association of a SNP in an intron of glucokinase regulatory protein (GCKR) with serum triglycerides. The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.


Nature Medicine | 2011

Metabolite profiles and the risk of developing diabetes

Thomas J. Wang; Martin G. Larson; Susan Cheng; Eugene P. Rhee; Elizabeth L. McCabe; Gregory D. Lewis; Caroline S. Fox; Paul F. Jacques; Céline Fernandez; Christopher J. O'Donnell; Stephen A Carr; Vamsi K. Mootha; Jose C. Florez; Amanda Souza; Olle Melander; Clary B. Clish; Robert E. Gerszten

Emerging technologies allow the high-throughput profiling of metabolic status from a blood specimen (metabolomics). We investigated whether metabolite profiles could predict the development of diabetes. Among 2,422 normoglycemic individuals followed for 12 years, 201 developed diabetes. Amino acids, amines and other polar metabolites were profiled in baseline specimens by liquid chromatography–tandem mass spectrometry (LC-MS). Cases and controls were matched for age, body mass index and fasting glucose. Five branched-chain and aromatic amino acids had highly significant associations with future diabetes: isoleucine, leucine, valine, tyrosine and phenylalanine. A combination of three amino acids predicted future diabetes (with a more than fivefold higher risk for individuals in top quartile). The results were replicated in an independent, prospective cohort. These findings underscore the potential key role of amino acid metabolism early in the pathogenesis of diabetes and suggest that amino acid profiles could aid in diabetes risk assessment.


WOS | 2013

Common genetic determinants of vitamin D insufficiency: a genome-wide association study

Thomas J. Wang; Feng Zhang; J. Brent Richards; Bryan Kestenbaum; Joyce B. J. van Meurs; Diane J. Berry; Douglas P. Kiel; Elizabeth A. Streeten; Claes Ohlsson; Daniel L. Koller; Leena Peltonen; Jason D. Cooper; Paul F. O'Reilly; Denise K. Houston; Nicole L. Glazer; Liesbeth Vandenput; Munro Peacock; J. Shi; Fernando Rivadeneira; Mark McCarthy; Pouta Anneli; Ian H. de Boer; Massimo Mangino; Bernet Kato; Deborah J. Smyth; Sarah L. Booth; Paul F. Jacques; Greg Burke; Mark O. Goodarzi; Ching-Lung Cheung

BACKGROUND Vitamin D is crucial for maintenance of musculoskeletal health, and might also have a role in extraskeletal tissues. Determinants of circulating 25-hydroxyvitamin D concentrations include sun exposure and diet, but high heritability suggests that genetic factors could also play a part. We aimed to identify common genetic variants affecting vitamin D concentrations and risk of insufficiency. METHODS We undertook a genome-wide association study of 25-hydroxyvitamin D concentrations in 33 996 individuals of European descent from 15 cohorts. Five epidemiological cohorts were designated as discovery cohorts (n=16 125), five as in-silico replication cohorts (n=9367), and five as de-novo replication cohorts (n=8504). 25-hydroxyvitamin D concentrations were measured by radioimmunoassay, chemiluminescent assay, ELISA, or mass spectrometry. Vitamin D insufficiency was defined as concentrations lower than 75 nmol/L or 50 nmol/L. We combined results of genome-wide analyses across cohorts using Z-score-weighted meta-analysis. Genotype scores were constructed for confirmed variants. FINDINGS Variants at three loci reached genome-wide significance in discovery cohorts for association with 25-hydroxyvitamin D concentrations, and were confirmed in replication cohorts: 4p12 (overall p=1.9x10(-109) for rs2282679, in GC); 11q12 (p=2.1x10(-27) for rs12785878, near DHCR7); and 11p15 (p=3.3x10(-20) for rs10741657, near CYP2R1). Variants at an additional locus (20q13, CYP24A1) were genome-wide significant in the pooled sample (p=6.0x10(-10) for rs6013897). Participants with a genotype score (combining the three confirmed variants) in the highest quartile were at increased risk of having 25-hydroxyvitamin D concentrations lower than 75 nmol/L (OR 2.47, 95% CI 2.20-2.78, p=2.3x10(-48)) or lower than 50 nmol/L (1.92, 1.70-2.16, p=1.0x10(-26)) compared with those in the lowest quartile. INTERPRETATION Variants near genes involved in cholesterol synthesis, hydroxylation, and vitamin D transport affect vitamin D status. Genetic variation at these loci identifies individuals who have substantially raised risk of vitamin D insufficiency. FUNDING Full funding sources listed at end of paper (see Acknowledgments).


The New England Journal of Medicine | 2008

Genotype score in addition to common risk factors for prediction of type 2 diabetes.

James B. Meigs; Peter Shrader; Lisa M. Sullivan; Jarred B. McAteer; Caroline S. Fox; Josée Dupuis; Alisa K. Manning; Jose C. Florez; Peter W.F. Wilson; Ralph B. D'Agostino; L. Adrienne Cupples

BACKGROUND Multiple genetic loci have been convincingly associated with the risk of type 2 diabetes mellitus. We tested the hypothesis that knowledge of these loci allows better prediction of risk than knowledge of common phenotypic risk factors alone. METHODS We genotyped single-nucleotide polymorphisms (SNPs) at 18 loci associated with diabetes in 2377 participants of the Framingham Offspring Study. We created a genotype score from the number of risk alleles and used logistic regression to generate C statistics indicating the extent to which the genotype score can discriminate the risk of diabetes when used alone and in addition to clinical risk factors. RESULTS There were 255 new cases of diabetes during 28 years of follow-up. The mean (+/-SD) genotype score was 17.7+/-2.7 among subjects in whom diabetes developed and 17.1+/-2.6 among those in whom diabetes did not develop (P<0.001). The sex-adjusted odds ratio for diabetes was 1.12 per risk allele (95% confidence interval, 1.07 to 1.17). The C statistic was 0.534 without the genotype score and 0.581 with the score (P=0.01). In a model adjusted for sex and self-reported family history of diabetes, the C statistic was 0.595 without the genotype score and 0.615 with the score (P=0.11). In a model adjusted for age, sex, family history, body-mass index, fasting glucose level, systolic blood pressure, high-density lipoprotein cholesterol level, and triglyceride level, the C statistic was 0.900 without the genotype score and 0.901 with the score (P=0.49). The genotype score resulted in the appropriate risk reclassification of, at most, 4% of the subjects. CONCLUSIONS A genotype score based on 18 risk alleles predicted new cases of diabetes in the community but provided only a slightly better prediction of risk than knowledge of common risk factors alone.


Diabetes | 2006

Common Single Nucleotide Polymorphisms in TCF7L2 Are Reproducibly Associated With Type 2 Diabetes and Reduce the Insulin Response to Glucose in Nondiabetic Individuals

Richa Saxena; Lauren Gianniny; Noël P. Burtt; Valeriya Lyssenko; Candace Giuducci; Marketa Sjögren; Jose C. Florez; Peter Almgren; Bo Isomaa; Marju Orho-Melander; Ulf Lindblad; Mark J. Daly; Tiinamaija Tuomi; Joel N. Hirschhorn; Kristin Ardlie; Leif Groop; David Altshuler

Recently, common noncoding variants in the TCF7L2 gene were strongly associated with increased risk of type 2 diabetes in samples from Iceland, Denmark, and the U.S. We genotyped 13 single nucleotide polymorphisms (SNPs) across TCF7L2 in 8,310 individuals in family-based and case-control designs from Scandinavia, Poland, and the U.S. We convincingly confirmed the previous association of TCF7L2 SNPs with the risk of type 2 diabetes (rs7903146T odds ratio 1.40 [95% CI 1.30–1.50], P = 6.74 × 10−20). In nondiabetic individuals, the risk genotypes were associated with a substantial reduction in the insulinogenic index derived from an oral glucose tolerance test (risk allele homozygotes have half the insulin response to glucose of noncarriers, P = 0.003) but not with increased insulin resistance. These results suggest that TCF7L2 variants may act through insulin secretion to increase the risk of type 2 diabetes.


Journal of Clinical Investigation | 2011

Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans

Eugene P. Rhee; Susan Cheng; Martin G. Larson; Geoffrey A. Walford; Gregory D. Lewis; Elizabeth L. McCabe; Elaine Yang; Laurie A. Farrell; Caroline S. Fox; Christopher J. O’Donnell; Steven A. Carr; Jose C. Florez; Clary B. Clish; Thomas J. Wang; Robert E. Gerszten

Dyslipidemia is an independent risk factor for type 2 diabetes, although exactly which of the many plasma lipids contribute to this remains unclear. We therefore investigated whether lipid profiling can inform diabetes prediction by performing liquid chromatography/mass spectrometry-based lipid profiling in 189 individuals who developed type 2 diabetes and 189 matched disease-free individuals, with over 12 years of follow up in the Framingham Heart Study. We found that lipids of lower carbon number and double bond content were associated with an increased risk of diabetes, whereas lipids of higher carbon number and double bond content were associated with decreased risk. This pattern was strongest for triacylglycerols (TAGs) and persisted after multivariable adjustment for age, sex, BMI, fasting glucose, fasting insulin, total triglycerides, and HDL cholesterol. A combination of 2 TAGs further improved diabetes prediction. To explore potential mechanisms that modulate the distribution of plasma lipids, we performed lipid profiling during oral glucose tolerance testing, pharmacologic interventions, and acute exercise testing. Levels of TAGs associated with increased risk for diabetes decreased in response to insulin action and were elevated in the setting of insulin resistance. Conversely, levels of TAGs associated with decreased diabetes risk rose in response to insulin and were poorly correlated with insulin resistance. These studies identify a relationship between lipid acyl chain content and diabetes risk and demonstrate how lipid profiling could aid in clinical risk assessment.


Annals of the New York Academy of Sciences | 2010

The genetics of type 2 diabetes: what have we learned from GWAS?

Liana K. Billings; Jose C. Florez

Type 2 diabetes mellitus has been at the forefront of human diseases and phenotypes studied by new genetic analyses. Thanks to genome‐wide association studies, we have made substantial progress in elucidating the genetic basis of type 2 diabetes. This review summarizes the concept, history, and recent discoveries produced by genome‐wide association studies for type 2 diabetes and glycemic traits, with a focus on the key notions we have gleaned from these efforts. Genome‐wide association findings have illustrated novel pathways, pointed toward fundamental biology, confirmed prior epidemiological observations, drawn attention to the role of β‐cell dysfunction in type 2 diabetes, explained ∼10% of disease heritability, tempered our expectations with regard to their use in clinical prediction, and provided possible targets for pharmacotherapy and pharmacogenetic clinical trials. We can apply these lessons to future investigation so as to improve our understanding of the genetic basis of type 2 diabetes.


Diabetologia | 2008

Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: Where are the insulin resistance genes?

Jose C. Florez

Although type 2 diabetes has been traditionally understood as a metabolic disorder initiated by insulin resistance, it has recently become apparent that an impairment in insulin secretion contributes to its manifestation and may play a prominent role in its early pathophysiology. The genetic dissection of Mendelian and, more recently, polygenic types of diabetes confirms the notion that primary defects in insulin synthesis, processing and/or secretion often give rise to the common form of this disorder. This concept, first advanced with the discovery and physiological characterisation of various genetic subtypes of MODY, has been extended to other forms of monogenic diabetes (e.g. neonatal diabetes). It has also led to the identification of common risk variants via candidate gene approaches (e.g. the E23K polymorphism in KCNJ11 or common variants in the MODY genes), and it has been validated by the description of the robust physiological effects conferred by polymorphisms in the TCF7L2 gene. More recently, the completion and integration of genome-wide association scans for this disease has uncovered a number of heretofore unsuspected variants, several of which also affect insulin secretion. This review provides an up-to-date account of genetic loci that influence risk of common type 2 diabetes via impairment of beta cell function, outlines their presumed mechanisms of action, and places them in the context of gene–gene and/or gene–environment interactions. Finally, a strategy for the analogous discovery of insulin resistance genes is proposed.


Diabetes | 2010

Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans

Erik Ingelsson; Claudia Langenberg; Marie-France Hivert; Inga Prokopenko; Valeriya Lyssenko; Josée Dupuis; Reedik Mägi; Stephen J. Sharp; Anne U. Jackson; Themistocles L. Assimes; Peter Shrader; Joshua W. Knowles; Björn Zethelius; Fahim Abbasi; Richard N. Bergman; Antje Bergmann; Christian Berne; Michael Boehnke; Lori L. Bonnycastle; Stefan R. Bornstein; Thomas A. Buchanan; Suzannah Bumpstead; Yvonne Böttcher; Peter S. Chines; Francis S. Collins; C Cooper; Elaine M. Dennison; Michael R. Erdos; Ele Ferrannini; Caroline S. Fox

OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 × 10−71). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes.

Collaboration


Dive into the Jose C. Florez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven E. Kahn

University of Washington

View shared research outputs
Top Co-Authors

Avatar

William C. Knowler

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline S. Fox

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge