Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie-Françoise Hullo is active.

Publication


Featured researches published by Marie-Françoise Hullo.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Essential Bacillus subtilis genes

Kazuo Kobayashi; S D Ehrlich; Alessandra M. Albertini; G. Amati; Kasper Krogh Andersen; M. Arnaud; Kei Asai; S. Ashikaga; Stéphane Aymerich; Philippe Bessières; F. Boland; S.C. Brignell; Sierd Bron; Keigo Bunai; J. Chapuis; L.C. Christiansen; Antoine Danchin; M. Débarbouillé; Etienne Dervyn; E. Deuerling; Kevin M. Devine; Susanne Krogh Devine; Oliver Dreesen; Jeff Errington; S. Fillinger; Simon J. Foster; Yasutaro Fujita; Alessandro Galizzi; R. Gardan; Caroline Eschevins

To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among ≈4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from bacteria with small genomes. Unexpectedly, most genes involved in the Embden–Meyerhof–Parnas pathway are essential. Identification of unknown and unexpected essential genes opens research avenues to better understanding of processes that sustain bacterial life.


Journal of Bacteriology | 2001

CotA of Bacillus subtilis Is a Copper-Dependent Laccase

Marie-Françoise Hullo; Ivan Moszer; Antoine Danchin; Isabelle Martin-Verstraete

The spore coat protein CotA of Bacillus subtilis displays similarities with multicopper oxidases, including manganese oxidases and laccases. B. subtilis is able to oxidize manganese, but neither CotA nor other sporulation proteins are involved. We demonstrate that CotA is a laccase. Syringaldazine, a specific substrate of laccases, reacted with wild-type spores but not with DeltacotA spores. CotA may participate in the biosynthesis of the brown spore pigment, which appears to be a melanin-like product and to protect against UV light.


Journal of Bacteriology | 2004

Three Different Systems Participate in l-Cystine Uptake in Bacillus subtilis

Pierre Burguière; Sandrine Auger; Marie-Françoise Hullo; Antoine Danchin; Isabelle Martin-Verstraete

The symporter YhcL and two ATP binding cassette transporters, YtmJKLMN and YckKJI, were shown to mediate L-cystine uptake in Bacillus subtilis. A triple DeltayhcL DeltaytmJKLMN DeltayckK mutant was unable to grow in the presence of L-cystine and to take up L-cystine. We propose that yhcL, ytmJKLMN, and yckKJI should be renamed tcyP, tcyJKLMN, and tcyABC, respectively. The L-cystine uptake by YhcL (K(m) = 0.6 microM) was strongly inhibited by seleno-DL-cystine, while the transport due to the YtmJKLMN system (K(m) = 2.5 microM) also drastically decreased in the presence of DL-cystathionine, L-djenkolic acid, or S-methyl-L-cysteine. Accordingly, a DeltaytmJKLMN mutant did not grow in the presence of 100 microM DL-cystathionine, 100 microM L-djenkolic acid, or 100 microM S-methyl-L-cysteine. The expression of the ytmI operon and the yhcL gene was regulated in response to sulfur availability, while the level of expression of the yckK gene remained low under all the conditions tested.


Journal of Bacteriology | 2007

Conversion of Methionine to Cysteine in Bacillus subtilis and Its Regulation

Marie-Françoise Hullo; Sandrine Auger; Olga Soutourina; Octavian Barzu; Mireille Yvon; Antoine Danchin; Isabelle Martin-Verstraete

Bacillus subtilis can use methionine as the sole sulfur source, indicating an efficient conversion of methionine to cysteine. To characterize this pathway, the enzymatic activities of CysK, YrhA and YrhB purified in Escherichia coli were tested. Both CysK and YrhA have an O-acetylserine-thiol-lyase activity, but YrhA was 75-fold less active than CysK. An atypical cystathionine beta-synthase activity using O-acetylserine and homocysteine as substrates was observed for YrhA but not for CysK. The YrhB protein had both cystathionine lyase and homocysteine gamma-lyase activities in vitro. Due to their activity, we propose that YrhA and YrhB should be renamed MccA and MccB for methionine-to-cysteine conversion. Mutants inactivated for cysK or yrhB grew similarly to the wild-type strain in the presence of methionine. In contrast, the growth of an DeltayrhA mutant or a luxS mutant, inactivated for the S-ribosyl-homocysteinase step of the S-adenosylmethionine recycling pathway, was strongly reduced with methionine, whereas a DeltayrhA DeltacysK or cysE mutant did not grow at all under the same conditions. The yrhB and yrhA genes form an operon together with yrrT, mtnN, and yrhC. The expression of the yrrT operon was repressed in the presence of sulfate or cysteine. Both purified CysK and CymR, the global repressor of cysteine metabolism, were required to observe the formation of a protein-DNA complex with the yrrT promoter region in gel-shift experiments. The addition of O-acetyl-serine prevented the formation of this protein-DNA complex.


Applied and Environmental Microbiology | 2006

Pleiotropic role of quorum-sensing autoinducer 2 in Photorhabdus luminescens.

Evelyne Krin; Nesrine Chakroun; Evelyne Turlin; Alain Givaudan; François Gaboriau; Isabelle Bonne; Jean-Claude Rousselle; Lionel Frangeul; Céline Lacroix; Marie-Françoise Hullo; Laetitia Marisa; Antoine Danchin; Sylviane Derzelle

ABSTRACT Bacterial virulence is an integrative process that may involve quorum sensing. In this work, we compared by global expression profiling the wild-type entomopathogenic Photorhabdus luminescens subsp. laumondii TT01 to a luxS-deficient mutant unable to synthesize the type 2 quorum-sensing inducer AI-2. AI-2 was shown to regulate more than 300 targets involved in most compartments and metabolic pathways of the cell. AI-2 is located high in the hierarchy, as it controls the expression of several transcriptional regulators. The regulatory effect of AI-2 appeared to be dose dependent. The luxS-deficient strain exhibited decreased biofilm formation and increased type IV/V pilus-dependent twitching motility. AI-2 activated its own synthesis and transport. It also modulated bioluminescence by regulating the synthesis of spermidine. AI-2 was further shown to increase oxidative stress resistance, which is necessary to overcome part of the innate immune response of the host insect involving reactive oxygen species. Finally, we showed that the luxS-deficient strain had attenuated virulence against the lepidopteran Spodoptera littoralis. We concluded that AI-2 is involved mainly in early steps of insect invasion in P. luminescens.


Journal of Biological Chemistry | 2008

The CymR Regulator in Complex with the Enzyme CysK Controls Cysteine Metabolism in Bacillus subtilis

Catherine Tanous; Olga Soutourina; Bertrand Raynal; Marie-Françoise Hullo; Peggy Mervelet; Anne-Marie Gilles; Philippe Noirot; Antoine Danchin; Patrick England; Isabelle Martin-Verstraete

Several enzymes have evolved as sensors in signal transduction pathways to control gene expression, thereby allowing bacteria to adapt efficiently to environmental changes. We recently identified the master regulator of cysteine metabolism in Bacillus subtilis, CymR, which belongs to the poorly characterized Rrf2 family of regulators. We now report that the signal transduction mechanism controlling CymR activity in response to cysteine availability involves the formation of a stable complex with CysK, a key enzyme for cysteine biosynthesis. We carried out a comprehensive quantitative characterization of this regulator-enzyme interaction by surface plasmon resonance and analytical ultracentrifugation. We also showed that O-acetylserine plays a dual role as a substrate of CysK and as an effector modulating the CymR-CysK complex formation. The ability of B. subtilis CysK to bind to CymR appears to be correlated to the loss of its capacity to form a cysteine synthase complex with CysE. We propose an original model, supported by the determination of the intracellular concentrations of the different partners, by which CysK positively regulates CymR in sensing the bacterial cysteine pool.


Journal of Bacteriology | 2002

Identification of Bacillus subtilis CysL, a Regulator of the cysJI Operon, Which Encodes Sulfite Reductase

Isabelle Guillouard; Sandrine Auger; Marie-Françoise Hullo; Farid Chetouani; Antoine Danchin; Isabelle Martin-Verstraete

The way in which the genes involved in cysteine biosynthesis are regulated is poorly characterized in Bacillus subtilis. We showed that CysL (formerly YwfK), a LysR-type transcriptional regulator, activates the transcription of the cysJI operon, which encodes sulfite reductase. We demonstrated that a cysL mutant and a cysJI mutant have similar phenotypes. Both are unable to grow using sulfate or sulfite as the sulfur source. The level of expression of the cysJI operon is higher in the presence of sulfate, sulfite, or thiosulfate than in the presence of cysteine. Conversely, the transcription of the cysH and cysK genes is not regulated by these sulfur sources. In the presence of thiosulfate, the expression of the cysJI operon was reduced 11-fold, whereas the expression of the cysH and cysK genes was increased, in a cysL mutant. A cis-acting DNA sequence located upstream of the transcriptional start site of the cysJI operon (positions -76 to -70) was shown to be necessary for sulfur source- and CysL-dependent regulation. CysL also negatively regulates its own transcription, a common characteristic of the LysR-type regulators. Gel mobility shift assays and DNase I footprint experiments showed that the CysL protein specifically binds to cysJ and cysL promoter regions. This is the first report of a regulator of some of the genes involved in cysteine biosynthesis in B. subtilis.


Genome Biology and Evolution | 2013

Complete DNA Sequence of Kuraishia capsulata Illustrates Novel Genomic Features among Budding Yeasts (Saccharomycotina)

Lucia Morales; Benjamin Noel; Betina M. Porcel; Marina Marcet-Houben; Marie-Françoise Hullo; Christine Sacerdot; Fredj Tekaia; Véronique Leh-Louis; Laurence Despons; Varun Khanna; Jean-Marc Aury; Valérie Barbe; Arnaud Couloux; Karen Labadie; Eric Pelletier; Jean-Luc Souciet; Teun Boekhout; Toni Gabaldón; Patrick Wincker; Bernard Dujon

The numerous yeast genome sequences presently available provide a rich source of information for functional as well as evolutionary genomics but unequally cover the large phylogenetic diversity of extant yeasts. We present here the complete sequence of the nuclear genome of the haploid-type strain of Kuraishia capsulata (CBS1993T), a nitrate-assimilating Saccharomycetales of uncertain taxonomy, isolated from tunnels of insect larvae underneath coniferous barks and characterized by its copious production of extracellular polysaccharides. The sequence is composed of seven scaffolds, one per chromosome, totaling 11.4 Mb and containing 6,029 protein-coding genes, ∼13.5% of which being interrupted by introns. This GC-rich yeast genome (45.7%) appears phylogenetically related with the few other nitrate-assimilating yeasts sequenced so far, Ogataea polymorpha, O. parapolymorpha, and Dekkera bruxellensis, with which it shares a very reduced number of tRNA genes, a novel tRNA sparing strategy, and a common nitrate assimilation cluster, three specific features to this group of yeasts. Centromeres were recognized in GC-poor troughs of each scaffold. The strain bears MAT alpha genes at a single MAT locus and presents a significant degree of conservation with Saccharomyces cerevisiae genes, suggesting that it can perform sexual cycles in nature, although genes involved in meiosis were not all recognized. The complete absence of conservation of synteny between K. capsulata and any other yeast genome described so far, including the three other nitrate-assimilating species, validates the interest of this species for long-range evolutionary genomic studies among Saccharomycotina yeasts.


Environmental Microbiology | 2008

Regulatory role of UvrY in adaptation of Photorhabdus luminescens growth inside the insect.

Evelyne Krin; Sylviane Derzelle; Karine Bedard; Evelyne Turlin; Pascal Lenormand; Marie-Françoise Hullo; Isabelle Bonne; Nesrine Chakroun; Céline Lacroix; Antoine Danchin

We report global expression profiling of a uvrY-deficient mutant of Photorhabdus luminescens. We found that the regulator moiety of the two-component regulatory system BarA/UvrY regulated more than 500 target genes coding for functions involved in the synthesis of major compartments and metabolic pathways of the cell. This regulation appeared to be in part indirect as UvrY affected the expression of several regulators. Indeed, the flagellum biosynthesis transcription activator FlhC and the flagella regulon were induced in the absence of UvrY, leading to a hyperflagellated phenotype and an increase in motility and biofilm formation. Two major regulatory systems were also altered: the type 2 quorum-sensing inducer AI-2 was activated by UvrY, and the CsrA regulator function appeared to be repressed by the increase of the small-untranslated RNA csrB, the CsrA activity inhibitor TldD and the chaperonin GroESL. Both through and independently of these systems, UvrY regulated oxidative stress resistance; bioluminescence; iron, sugar and peptide transport; proteases; polyketide synthesis enzymes and nucleobases recycling, related to insect degradation and assimilation by bacteria. As a consequence, the uvrY-deficient strain exhibited a decreased killing of insect cells and a reduced growth on insect cells culture, suggesting a UvrY role in the adaptation of P. luminescens inside the insect.


Fems Microbiology Letters | 2010

Complex phenotypes of a mutant inactivated for CymR, the global regulator of cysteine metabolism in Bacillus subtilis

Marie-Françoise Hullo; Isabelle Martin-Verstraete; Olga Soutourina

We characterized various phenotypes of a mutant inactivated for CymR, the master regulator of cysteine metabolism in Bacillus subtilis. The deletion of cymR resulted in impaired growth in the presence of cystine and increased sensitivity to hydrogen peroxide-, disulfide-, paraquat- and tellurite-induced stresses. Estimation of metabolite pools suggested that these phenotypes could be the result of profound metabolic changes in the DeltacymR mutant including an increase of the intracellular cysteine pool and hydrogen sulfide formation, as well as a depletion of branched-chain amino acids.

Collaboration


Dive into the Marie-Françoise Hullo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge