Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga Soutourina is active.

Publication


Featured researches published by Olga Soutourina.


Molecular Microbiology | 2001

Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS

Florence Hommais; Evelyne Krin; Christine Laurent-Winter; Olga Soutourina; Alain Malpertuy; Jean-Pierre Le Caer; Antoine Danchin; Philippe Bertin

Despite many years of intense work investigating the function of nucleoid‐associated proteins in prokaryotes, their role in bacterial physiology remains largely unknown. The two‐dimensional protein patterns were compared and expression profiling was carried out on H‐NS‐deficient and wild‐type strains of Escherichia coli K‐12. The expression of approximately 5% of the genes and/or the accumulation of their protein was directly or indirectly altered in the hns mutant strain. About one‐fifth of these genes encode proteins that are involved in transcription or translation and one‐third are known to or were in silico predicted to encode cell envelope components or proteins that are usually involved in bacterial adaptation to changes in environmental conditions. The increased expression of several genes in the mutant resulted in a better ability of this strain to survive at low pH and high osmolarity than the wild‐type strain. In particular, the putative regulator, YhiX, plays a central role in the H‐NS control of genes required in the glutamate‐dependent acid stress response. These results suggest that there is a strong relationship between the H‐NS regulon and the maintenance of intracellular homeostasis.


PLOS Genetics | 2013

Genome-Wide Identification of Regulatory RNAs in the Human Pathogen Clostridium difficile

Olga Soutourina; Marc Monot; Pierre Boudry; Laure Saujet; Christophe Pichon; Odile Sismeiro; Ekaterina Semenova; Konstantin Severinov; Chantal Le Bouguénec; Jean Yves Coppée; Bruno Dupuy; Isabelle Martin-Verstraete

Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA–seq and differential 5′-end RNA–seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA–based regulation of gene expression in this emergent enteropathogen.


Nucleic Acids Research | 2008

S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum

Gaëlle André; Sergine Even; Harald Putzer; Pierre Burguière; Christian Croux; Antoine Danchin; Isabelle Martin-Verstraete; Olga Soutourina

The ubiGmccBA operon of Clostridium acetobutylicum is involved in methionine to cysteine conversion. We showed that its expression is controlled by a complex regulatory system combining several RNA-based mechanisms. Two functional convergent promoters associated with transcriptional antitermination systems, a cysteine-specific T-box and an S-box riboswitch, are located upstream of and downstream from the ubiG operon, respectively. Several antisense RNAs were synthesized from the downstream S-box-dependent promoter, resulting in modulation of the level of ubiG transcript and of MccB activity. In contrast, the upstream T-box system did not appear to play a major role in regulation, leaving antisense transcription as the major regulatory mechanism for the ubiG operon. The abundance of sense and antisense transcripts was inversely correlated with the sulfur source availability. Deletion of the downstream promoter region completely abolished the sulfur-dependent control of the ubiG operon, and the expression of antisense transcripts in trans did not restore the regulation of the operon. Our data revealed important insights into the molecular mechanism of cis-antisense-mediated regulation, a control system only rarely observed in prokaryotes. We proposed a regulatory model in which the antisense RNA controlled the expression of the ubiG operon in cis via transcriptional interference at the ubiG locus.


Journal of Bacteriology | 2011

The Key Sigma Factor of Transition Phase, SigH, Controls Sporulation, Metabolism, and Virulence Factor Expression in Clostridium difficile

Laure Saujet; Marc Monot; Bruno Dupuy; Olga Soutourina; Isabelle Martin-Verstraete

Toxin synthesis in Clostridium difficile increases as cells enter into stationary phase. We first compared the expression profiles of strain 630E during exponential growth and at the onset of stationary phase and showed that genes involved in sporulation, cellular division, and motility, as well as carbon and amino acid metabolism, were differentially expressed under these conditions. We inactivated the sigH gene, which encodes an alternative sigma factor involved in the transition to post-exponential phase in Bacillus subtilis. Then, we compared the expression profiles of strain 630E and the sigH mutant after 10 h of growth. About 60% of the genes that were differentially expressed between exponential and stationary phases, including genes involved in motility, sporulation, and metabolism, were regulated by SigH, which thus appears to be a key regulator of the transition phase in C. difficile. SigH positively controls several genes required for sporulation. Accordingly, sigH inactivation results in an asporogeneous phenotype. The spo0A and CD2492 genes, encoding the master regulator of sporulation and one of its associated kinases, and the spoIIA operon were transcribed from a SigH-dependent promoter. The expression of tcdA and tcdB, encoding the toxins, and of tcdR, encoding the sigma factor required for toxin production, increased in a sigH mutant. Finally, SigH regulates the expression of genes encoding surface-associated proteins, such as the Cwp66 adhesin, the S-layer precursor, and the flagellum components. Among the 286 genes positively regulated by SigH, about 40 transcriptional units presenting a SigH consensus in their promoter regions are good candidates for direct SigH targets.


PLOS Genetics | 2013

Genome-Wide Analysis of Cell Type-Specific Gene Transcription during Spore Formation in Clostridium difficile

Laure Saujet; Fátima C. Pereira; Mónica Serrano; Olga Soutourina; Marc Monot; Pavel V. Shelyakin; Mikhail S. Gelfand; Bruno Dupuy; Adriano O. Henriques; Isabelle Martin-Verstraete

Clostridium difficile, a Gram positive, anaerobic, spore-forming bacterium is an emergent pathogen and the most common cause of nosocomial diarrhea. Although transmission of C. difficile is mediated by contamination of the gut by spores, the regulatory cascade controlling spore formation remains poorly characterized. During Bacillus subtilis sporulation, a cascade of four sigma factors, σF and σG in the forespore and σE and σK in the mother cell governs compartment-specific gene expression. In this work, we combined genome wide transcriptional analyses and promoter mapping to define the C. difficile σF, σE, σG and σK regulons. We identified about 225 genes under the control of these sigma factors: 25 in the σF regulon, 97 σE-dependent genes, 50 σG-governed genes and 56 genes under σK control. A significant fraction of genes in each regulon is of unknown function but new candidates for spore coat proteins could be proposed as being synthesized under σE or σK control and detected in a previously published spore proteome. SpoIIID of C. difficile also plays a pivotal role in the mother cell line of expression repressing the transcription of many members of the σE regulon and activating sigK expression. Global analysis of developmental gene expression under the control of these sigma factors revealed deviations from the B. subtilis model regarding the communication between mother cell and forespore in C. difficile. We showed that the expression of the σE regulon in the mother cell was not strictly under the control of σF despite the fact that the forespore product SpoIIR was required for the processing of pro-σE. In addition, the σK regulon was not controlled by σG in C. difficile in agreement with the lack of pro-σK processing. This work is one key step to obtain new insights about the diversity and evolution of the sporulation process among Firmicutes.


Journal of Bacteriology | 2007

Conversion of Methionine to Cysteine in Bacillus subtilis and Its Regulation

Marie-Françoise Hullo; Sandrine Auger; Olga Soutourina; Octavian Barzu; Mireille Yvon; Antoine Danchin; Isabelle Martin-Verstraete

Bacillus subtilis can use methionine as the sole sulfur source, indicating an efficient conversion of methionine to cysteine. To characterize this pathway, the enzymatic activities of CysK, YrhA and YrhB purified in Escherichia coli were tested. Both CysK and YrhA have an O-acetylserine-thiol-lyase activity, but YrhA was 75-fold less active than CysK. An atypical cystathionine beta-synthase activity using O-acetylserine and homocysteine as substrates was observed for YrhA but not for CysK. The YrhB protein had both cystathionine lyase and homocysteine gamma-lyase activities in vitro. Due to their activity, we propose that YrhA and YrhB should be renamed MccA and MccB for methionine-to-cysteine conversion. Mutants inactivated for cysK or yrhB grew similarly to the wild-type strain in the presence of methionine. In contrast, the growth of an DeltayrhA mutant or a luxS mutant, inactivated for the S-ribosyl-homocysteinase step of the S-adenosylmethionine recycling pathway, was strongly reduced with methionine, whereas a DeltayrhA DeltacysK or cysE mutant did not grow at all under the same conditions. The yrhB and yrhA genes form an operon together with yrrT, mtnN, and yrhC. The expression of the yrrT operon was repressed in the presence of sulfate or cysteine. Both purified CysK and CymR, the global repressor of cysteine metabolism, were required to observe the formation of a protein-DNA complex with the yrrT promoter region in gel-shift experiments. The addition of O-acetyl-serine prevented the formation of this protein-DNA complex.


Biochimie | 2001

H-NS and H-NS-like proteins in Gram-negative bacteria andtheir multiple role in the regulation of bacterial metabolism

Philippe Bertin; Florence Hommais; Evelyne Krin; Olga Soutourina; Christian Tendeng; Sylviane Derzelle; Antoine Danchin

In Escherichia coli, the H-NS protein plays an important role in the structure and the functioning of bacterial chromosome. A homologous protein has also been identified in several enteric bacteria and in closely related organisms such as Haemophilus influenzae. To get information on their structure and their function, we identified H-NS-like proteins in various microorganisms by different procedures. In silico analysis of their amino acid sequence and/or in vivo experiments provide evidence that more than 20 proteins belong to the same class of regulatory proteins. Moreover, large scale technologies demonstrate that, at least in E. coli, the loss of motility in hns mutants results from a lack of flagellin biosynthesis, due to the in vivo repression of flagellar gene expression. In contrast, several genes involved in adaptation to low pH are strongly induced in a H-NS deficient strain, resulting in an increased resistance to acidic stress. Finally, expression profiling and phenotypic analysis suggest that, unlike H-NS, its paralogous protein StpA does not play any role in these processes.


Journal of Biological Chemistry | 2008

The CymR Regulator in Complex with the Enzyme CysK Controls Cysteine Metabolism in Bacillus subtilis

Catherine Tanous; Olga Soutourina; Bertrand Raynal; Marie-Françoise Hullo; Peggy Mervelet; Anne-Marie Gilles; Philippe Noirot; Antoine Danchin; Patrick England; Isabelle Martin-Verstraete

Several enzymes have evolved as sensors in signal transduction pathways to control gene expression, thereby allowing bacteria to adapt efficiently to environmental changes. We recently identified the master regulator of cysteine metabolism in Bacillus subtilis, CymR, which belongs to the poorly characterized Rrf2 family of regulators. We now report that the signal transduction mechanism controlling CymR activity in response to cysteine availability involves the formation of a stable complex with CysK, a key enzyme for cysteine biosynthesis. We carried out a comprehensive quantitative characterization of this regulator-enzyme interaction by surface plasmon resonance and analytical ultracentrifugation. We also showed that O-acetylserine plays a dual role as a substrate of CysK and as an effector modulating the CymR-CysK complex formation. The ability of B. subtilis CysK to bind to CymR appears to be correlated to the loss of its capacity to form a cysteine synthase complex with CysE. We propose an original model, supported by the determination of the intracellular concentrations of the different partners, by which CysK positively regulates CymR in sensing the bacterial cysteine pool.


Research in Microbiology | 2010

RcsB plays a central role in H-NS-dependent regulation of motility and acid stress resistance in Escherichia coli

Evelyne Krin; Antoine Danchin; Olga Soutourina

In Escherichia coli, hns mutants lack flagellar motility and display an increase in acid stress resistance. Spontaneous phenotypic revertants showed reversion of both H-NS-controlled phenotypes. In the present study, suppressor mutations were identified in the rcsB gene. In addition to RcsA, our experiments establish that H-NS indirectly controlled the RcsB regulator via repression of RcsD. We also show that RcsB(D56E), mimicking phosphorylated RcsB, interacts with GadE to form a RcsB-P/GadE complex, a general direct regulator of glutamate-, arginine- and lysine-dependent acid resistance pathways. In addition, we showed that H-NS positively affects motility via the flhDC master operon repression by RcsB. This substantiates the central role of RcsB in H-NS-mediated control of motility and acid stress resistance.


Applied and Environmental Microbiology | 2001

Control of bacterial motility by environmental factors in polarly flagellated and peritrichous bacteria isolated from Lake Baikal

Olga Soutourina; E. A. Semenova; V. V. Parfenova; Antoine Danchin; Philippe Bertin

ABSTRACT Despite numerous studies on bacterial motility, little is known about the regulation of this process by environmental factors in natural isolates. In this study we investigated the control of bacterial motility in response to environmental parameters in two strains isolated from the natural habitat of Lake Baikal. Morphological characterization, carbon source utilization, fermentation analysis, and sequence comparison of 16S rRNA genes showed that these strains belong to two distinct genera, i.e., Enterobacter andPseudomonas; they were named strains 22 and Y1000, respectively. Both strains swarmed at 25°C and remained motile at low temperatures (4°C), especially the Pseudomonasstrain, which further supports the psychrotrophic characteristics of this strain. In contrast, a strong inhibition of motility was observed at above 30°C and with a high NaCl concentration. The existence of flagellar regulatory proteins FlhDC and FleQ was demonstrated inEnterobacter strain 22 and Pseudomonasstrain Y1000, respectively, and environmental conditions reduced the expression of the structural genes potentially located at the first level in the flagellar cascade in both organisms. Finally, as inEnterobacter strain 22, a strong reduction in the transcription of the master regulatory gene fleQ was observed in Pseudomonas strain Y1000 in the presence of novobiocin, a DNA gyrase inhibitor, suggesting a link between DNA supercoiling and motility control by environmental factors. Thus, striking similarities observed in the two organisms suggest that these processes have evolved toward a similar regulatory mechanism in polarly flagellated and laterally flagellated (peritrichous) bacteria.

Collaboration


Dive into the Olga Soutourina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge