Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie-Laure Baudet is active.

Publication


Featured researches published by Marie-Laure Baudet.


Endocrinology | 2009

Growth Hormone Promotes Axon Growth in the Developing Nervous System

Marie-Laure Baudet; Darrien Rattray; Brent T. Martin; Steve Harvey

Postnatally, endocrine GH is primarily produced by pituitary somatotrophs. GH is, however, also produced in extrapituitary sites, including tissues of the developing nervous system such as the neural retina. Whereas GH roles in the nervous system are starting to emerge, they are still largely unknown. We show here that GH in the neural retina is mainly present in the axons of retinal ganglion cells (RGCs) in embryonic day (E) 4-12 chick embryos, but it is no longer present at E14-18. This temporal window corresponds to the period of RGC axon growth. GH receptor mRNA was also detected within cells of the E7 RGC layer and GH receptor protein colocalized with GH in RGC axons. The possibility that GH promotes axon growth was thus investigated. Exogenous GH induced a significant increase in axon elongation at 10(-9) and 10(-6) M in E7 RGC culture purified by immunopanning. RNA interference-mediated gene silencing was used to examine whether endogenous GH similarly alters axon outgrowth. The ability of GH small-interfering RNA to knock down GH was first tested using HEK cells on a LacZ-cGH expression plasmid and found to reach 90%. Upon transfection of GH small-interfering RNA to immunopanned RGC culture, a 63% knockdown of endogenous GH was detected and RGC axon length was found to be reduced by 40%. Taken together, these data suggest that GH acts as an autocrine or paracrine signaling molecule to promote axon growth in a developing nervous tissue, the neural retina of chick embryos.


Journal of Molecular Neuroscience | 2006

Retinal growth hormone in perinatal and adult rats

Steve Harvey; Marie-Laure Baudet; Esmond J. Sanders

Growth hormone (GH) mRNA and protein have recently been localized in the neural retina, of embryonic chicks, in which exogenous GH promotes cell survival. GH is also expressed in the rat CNS, in which it has neuroprotective roles, although its presence in the rat neural retina is unknown and is the focus of the present study. GH immunoreactivity, to a 22-kDa protein, was present in extracts of fetal (embryonic day [ED]17) eyes and in extracts from the neural retinas of newborn pups, comparable to GH immunoreactivity in pituitary extracts. The GH immunoreactivity in the neural retina was widespread but was most intense in large rounded cells in the retinal ganglion cell (RGC) layer and in the optic fiber layer derived from the axons of the RGCs. A 693-bp cDNA was also generated by the RT-PCR of RNA extracted from the eyes of ED17 rats and from the neural retinas and eyes of newborn rats, when amplified in the presence of oligonucleotide primers for the rat GH cDNA. Expression of the GH gene in the neural retina was also shown by specific in situ hybridization of an antisense GH riboprobe to cells in the neural retina, particularly those in the RGC layers of fetal and adult rat eyes. These results demonstrate GH expression in the neural retinas of fetal, newborn, and adult rats, in which retinal GH might have neuroprotective roles.


General and Comparative Endocrinology | 2009

Signaling mechanisms mediating local GH action in the neural retina of the chick embryo

Esmond J. Sanders; Marie-Laure Baudet; Eve Parker; Steve Harvey

Growth hormone (GH) is found in the retina and vitreous of the chick embryo, where it appears to act as a growth and differentiation factor, having neuroprotective effects on retinal ganglion cells (RGCs). Here, we review the molecular mechanisms of the anti-apoptotic effect of GH in chick RGCs. GH treatment of RGCs reduces Akt levels, while raising Akt-phos levels, consistent with a role for Akt signaling pathways in the GH neuroprotective action. The induction of apoptosis by immunoneutralization with GH antiserum is accompanied by an increase in caspase-3 and caspase-9 activation, and also PARP-1 cleavage. Calpain activation also appears to be a major caspase-independent pathway to PARP-1 cleavage and apoptosis in these cells, supporting the view that caspase and calpain inhibitors are major neuroprotective agents for RGCs, and that pathways that activate both caspases and calpains are important for the anti-apoptotic actions of GH in these cells. These pathways involve the activation of cytosolic tyrosine kinases (Trks) and extracellular-signal-related kinases (ERKs). Occupation of the GH receptor by GH involves downstream intracellular Trk pathways. The Akt and Trk pathways appear to converge on the activation of cAMP response element binding protein (CREB), which is able to initiate transcription of pro- or anti-apoptotic genes. These results indicate that the action of GH in the neuroprotection of embryonic RGCs involves pathways common to with other neurotrophins, and that GH can be considered to be a growth and differentiation factor in the development of the embryonic retina. We have also investigated the relationship between the overlapping anti-apoptotic effects of GH and insulin-like growth factor-1 (IGF-1), two functionally closely related factors. We find that simultaneous immunoneutralization of GH and IGF-1 does not increase the level of apoptosis in the cultures above that achieved by immunoneutralization of GH alone. We therefore conclude that the neuroprotective actions of GH in the developing retina are likely mediated in large part through the action of IGF-1.


Neuroscience | 2007

Growth hormone and its receptor in projection neurons of the chick visual system: retinofugal and tectobulbar tracts.

Marie-Laure Baudet; D. Rattray; Steve Harvey

Recent studies have shown the presence of growth hormone (GH) in the retinal ganglion cells (RGCs) of the neural retina in chick embryos at the end of the first trimester [embryonic day (E) 7] of the 21 day incubation period. In this study the presence of GH in fascicles of the optic fiber layer (OFL), formed by axons derived from the underlying RGCs, is shown. Immunoreactivity for GH is also traced through the optic nerve head, at the back of the eye, into the optic nerve, through the optic chiasm, into the optic tract and into the stratum opticum and the retinorecipient layer of the optic tectum, where the RGC axons synapse. The presence of GH immunoreactivity in the tectum occurs prior to synaptogenesis with RGC axons and thus reflects the local expression of the GH gene, especially as GH mRNA is also distributed within this tissue. The distribution of GH-immunoreactivity in the visual system of the E7 embryo is consistent with the distribution of the GH receptor (GHR), which is also expressed in the neural retina and tectum. The presence of a GH-responsive gene (GHRG-1) in these tissues also suggests that the visual system is not just a site of GH production but a site of GH action. These results support the possibility that GH acts as a local growth factor during early embryonic development of the visual system.


Annals of the New York Academy of Sciences | 2009

Growth hormone-induced neuroprotection in the neural retina during chick embryogenesis.

Steve Harvey; Marie-Laure Baudet; Esmond J. Sanders

Recent studies have established that retinal ganglion cells (RGCs) of the neural retina are extrapituitary sites of growth hormone (GH) production and action in early chick embryos prior to the ontogeny of pituitary somatotrophs. The presence of GH in axons of the RGCs is, however, restricted to the period when the retinofugal neurons project to and synapse with visual centers within the brain, suggesting roles for GH in axonal growth or guidance. Autocrine and/or paracrine actions of retinal GH are also neuroprotective for RGCs during developmental waves of apoptosis that characterize RGC differentiation. The anti‐apoptotic actions of retinal GH use signaling mechanisms that are common to other established neurotrophins (e.g., brain‐derived growth factor, insulin‐like growth factor‐1, transforming growth factor β‐1). Retinal GH is therefore a novel neurotrophin in the visual system during chick embryogenesis.


General and Comparative Endocrinology | 2014

Extrapituitary growth hormone and growth

Steve Harvey; Marie-Laure Baudet

While growth hormone (GH) is obligatory for postnatal growth, it is not required for a number of growth-without-GH syndromes, such as early embryonic or fetal growth. Instead, these syndromes are thought to be dependent upon local growth factors, rather than pituitary GH. The GH gene is, however, also expressed in many extrapituitary tissues, particularly during early development and extrapituitary GH may be one of the local growth factors responsible for embryonic or fetal growth. Moreover, as the expression of the GH receptor (GHR) gene mirrors that of GH in extrapituitary tissues the actions of GH in early development are likely to be mediated by local autocrine or paracrine mechanisms, especially as extrapituitary GH expression occurs prior to the ontogeny of pituitary somatotrophs or the appearance of GH in the circulation. The extrapituitary expression of pituitary somatotrophs or the appearance of GH in the circulation. The extrapituitary expression of GH in embryos has also been shown to be of functional relevance in a number of species, since the immunoneutralization of endogenous GH or the blockade of GH production is accompanied by growth impairment or cellular apoptosis. The extrapituitary expression of the GH gene also persists in some central and peripheral tissues postnatally, which may reflect its continued functional importance and physiological or pathophysiological significance. The expression and functional relevance of extrapituitary GH, particularly during embryonic growth, is the focus of this brief review.


Journal of Molecular Neuroscience | 2007

Small Chicken Growth Hormone (scGH) Variant in the Neural Retina

Marie-Laure Baudet; Steve Harvey

A novel variant of chicken growth hormone (cGH) that is severely truncated has recently been discovered in the neural retina. It is, however, unknown whether this protein binds to GH receptors (GHRs) and has biological activity. This possibility has therefore been addressed by homology modeling, using human (h)GH as a template because it is the only GH molecule with a crystal structure and because hGH binds to cGH receptors (cGHRs). Most of the residues of the small (s)cGH model fitted the hGH template, apart from two restricted regions from Ser 12 to Gln 20 and from Ser 55 to Val 58. The scGH model differs, however, from hGH in structure: hGH is composed of a four-helix bundle, whereas scGH has three main helices. Helices 2, 3, and 4 of hGH correspond to helices 1, 2, and 3 of scGH, but they are longer by one, four, and one residues, respectively. The secondary structure of the C-terminus of scGH is therefore similar to C-terminal hGH. The N-terminus of scGH is, however, severely truncated, lacking the residues of the full-length molecule derived from exons 1, 2, and 3. The N-terminus of scGH also includes 20 residues derived from intron C of full-length cGH. The predicted structure of its N-terminus has no classical secondary structure (α-helix or β-sheet), whereas the N-terminus of hGH is composed of helix 1 and two mini-helices located between helix 1 and 2. This difference in ribbon structure results in a difference in the overall shape of the scGH model and hGH.The possibility that scGH could bind to a GHR dimer was assessed by examining the primary and hypothetical tertiary structure of scGH. hGH binds the extracellular domain (ECD) of two GHRs sequentially at its binding site 1 (or high affinity site) then at its binding site 2 (or low affinity site). Sequence alignment of scGH with hGH demonstrates that scGH lacks three key residues (of 14) at site 1 and nine residues (of 15) at site 2. It is therefore unlikely that tight binding of ECD1 to the site 1 of scGH could occur. ScGH also lacks most of the site 2 residues, suggesting that it is unlikely that ECD2 would bind to the scGH model. In summary, we have developed a novel, structural model of scGH, with implications for its putative actions through classical GHRs.


Archive | 2011

Proteomic Actions of Growth Hormone in the Nervous System

Steve Harvey; Marie-Laure Baudet

The brain is an endocrine target site for pituitary growth hormone (GH) and an autocrine or paracrine target site for GH produced within nervous tissue. Growth hormone receptor (GHR)-mediated GH actions in the nervous system promote neural growth and differentiation, neuroprotection, neurotransmission, neuroendocrine function and behavior. Growth hormone signaling in the nervous system involves intracellular cascades and changes in gene transcription that often result in proteomic changes in the central and peripheral nervous systems. Neural GH actions mediated through changes in protein synthesis are summarized in this brief review.


Endocrinology | 2003

Retinal Growth Hormone in the Chick Embryo

Marie-Laure Baudet; Esmond J. Sanders; Steve Harvey


General and Comparative Endocrinology | 2004

Testicular growth hormone (GH): GH expression in spermatogonia and primary spermatocytes

Steve Harvey; Marie-Laure Baudet; A. Murphy; Maricela Luna; Kerry L. Hull; Carlos Arámburo

Collaboration


Dive into the Marie-Laure Baudet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Murphy

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge